
NASA/TM—2005–209997/VER200803.0/VOL. 5a

ICESat (GLAS) Science Computing Facility
Document Series

Volume 5a
SCF Interface Software Detailed Design Document
Version 200803.0

Kristine Barbieri
Anita Brenner

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

__

March 2008

Last updated: 3/14/2008 Page iii Version 200803.0

TABLE OF CONTENTS

SECTION 1: INTRODUCTION.. 1
SECTION 2: RELATED DOCUMENTATION .. 2
SECTION 3: ENVIRONMENT... 3

3.1 User Account ... 3
3.2 Script Location ... 3
3.3 Secure Shell Environment ... 3
3.4 Korn Shell Environmental Variables .. 3

SECTION 4: SCRIPT DESCRIPTIONS .. 6
4.1 pull_from_remote.pl: Perl script to pull data from a remote host to local host........ 6
4.2 pull_from_remote_lock.pl: Perl script to pull data from a remote host to local host
and create a lock file while pulling data ... 8
4.3 pull_pan_from_remote.pl: Perl script to pull PAN files from a remote host to local
host.. 10
4.4 push_to_remote.pl: Perl script to push data from the local host to a remote host 12
4.5 push_to_remote_lock.pl: Perl script to push data from the local host to a remote
host and create a lock file while pushing data ... 14
4.6 files_to_subdir_from_pull.pl: Perl script to move data from local input cache to
local subdirectories after a data pull .. 16
4.7 mscf_files_to_subdir_from_pull.pl: Perl script to move data from local ISIPS input
cache to local subdirectories on the mSCF after a data pull and create an FN file or
PDR file ... 18
4.8 files_to_subdir_from_push.pl: Perl script to move data from the local input cache
to local subdirectories after a data push .. 21
4.9 read_fn_file.pl: Perl script to read an FN file and create an XFR file if all the files in
the distribution are in the subdirectory ... 24
4.10 create_pdr.pl: Perl script to create a PDR file for a distribution set 26
4.11 create_pdr_gzip.pl: Perl script to create a PDR file for a distribution set 28
4.12 check_for_pan.pl: Perl script to read PAN in input cache and remove files listed
in corresponding PDR from output cache. ... 29
4.13 update_rev_file.pl: Perl script to update rev file and send to remote sites. 31
4.14 pull_anc06_from_remote.pl: Perl script to transfer anc06summary.txt file from I-
SIPS to mSCF. .. 32
4.15 read_pdr_files.pm: Perl script that reads PDR file and returns file information.. 33
4.16 verify_pdr.pm: Perl script that verifies distribution set against information in the
PDR file ... 34
4.17 create_pan.pm: Perl script that creates a PAN file .. 36
4.18 create_pdr_input.pm: Perl script to create PDR input file. 38
4.19 get_subdir.pm: Perl script that determines subdirectory based on information in
the PDR File .. 39
4.20 read_keyword.pm: Perl script that reads a line and separates the value from the
keyword ... 40

Last updated: 3/14/2008 Page iv Version 200803.0

4.21 get_cksum.pm: Perl script that gets the file size and checksum for the input file
... 41
4.22 send_mail_local.pm: Perl script that sends mail to local personnel 41
4.23 send_mail_isips.pm: Perl script that sends mail to I-SIPS personnel 42
4.24 send_mail_user.pl: Perl script that sends mail to input email address............... 43
4.25 update_error_table.pm: Perl script that updates the ERROR table in the MYSQL
database with error message .. 44
4.26 update_dist_file_table.pm: Perl script that updates the DISTRIBUTION_FILES
table in the MYSQL database with distribution file information 45
4.27 create_rev_text.pm: Perl script that reads the rev file and creates a text file for
SCF website .. 46
4.28 scp_rev_files.ksh: Korn shell script that transfers a file to remote sites 47
4.29 scp_file_web.ksh: Korn shell script that transfers a file to SCF websites only ... 47
4.30 untar.ksh: Korn shell script that untars a tar file ... 48
4.31 hdf_to_png.ksh: Korn shell script that calls an IDL routine to convert an HDF file
to one or more PNG files ... 48
4.32 hdf2png.pro: IDL routine that converts an HDF file to one or more PNG files ... 49

SECTION 5: FILE DESCRIPTIONS.. 50
5.1 PDR Description .. 50
5.2 Typical PDR... 50
5.3 PDR Input File Description .. 51
5.4 PAN Description .. 53
5.5 FN File Description .. 53
5.6 Web Rev Text File Description .. 54

APPENDIX A: ABBREVIATIONS & ACRONYMS... 56

Last updated: 3/14/2008 Page 1 Version 200803.0

SECTION 1: INTRODUCTION

A series of Perl scripts have been written to move data from the ICESat Science
Investigator-led Processing System (I-SIPS) to the main Science Computing Facility
(mSCF) and from the main SCF to the remote Science Computing Facilities (rSCFs)
located at the various institutions of the GLAS science team. These scripts, however,
with minor modifications, may be used by other systems as long as the necessary
initialization files and permissions are established. This document describes the
detailed design of the scripts.

Last updated: 3/14/2008 Page 2 Version 200803.0

SECTION 2: RELATED DOCUMENTATION

-SCF Architectural Design Document
-SCF Data Request Software Detailed Design Document
-SCF Data Request Software User's Guide
-SCF Data Visualization Software User's Guide
-SCF Operator’s Guide
-SCF Interface Control Document
-SCF Interface Software Update Document
-SCF Interface Software Installation Guide
-SCF Interface Software Detailed Design Document
-SCF Interface Software Operator's Guide for rSCF
-SCF Interface Software Operator's Guide for mSCF
-I-SIPS Interface Software Operator's Guide for ISF
-I-SIPS Interface Software Operator's Guide for UTCSR
-Interface Control Document Between I-SIPS/ISF and CSR

Last updated: 3/14/2008 Page 3 Version 200803.0

SECTION 3: ENVIRONMENT

3.1 User Account
It is expected that file movement between the local and remote hosts will be done under
a specific user account. This account needs to be setup with the necessary files and
appropriate permissions to enable the data to flow smoothly between the systems.

3.2 Script Location
The perl scripts should be placed in a versioned subdirectory under the home directory
(i.e. ~ /src/perl/200304.0). The scripts are then linked to the ~ /src/perl/ops directory and
run from there. Korn shell scripts only reside in ~ /src/perl/ops. This path is one of the
environmental variables used to run the scripts.

3.3 Secure Shell Environment
Openssh is used for performing actions across hosts in a secure environment. It uses
public key authentication, therefore keys need to be established in unencrypted,
nopassphrase key files on each system. Once this is done and connections have been
made between systems at least once, the scripts will run non-interactively. Refer to the
SCF Interface Software Installation Guide for information on creating the key files.

3.4 Korn Shell Environmental Variables
Environmental variables need to be defined either in the .kshrc file in the home directory of the
local host running the scripts or in a korn shell script invoking the scripts in order to perform
certain functions.

For a local host pulling data from a remote host (i.e. for the ISF, mSCF, and UTCSR pulling data
from the I-SIPS):

-export USERNAME=user name
-export ISIPS_HOST=I-SIPS host name
-export ISIPS_OUTPUT=I-SIPS output cache
-export ISIPS_INPUT=I-SIPS input cache
-export LOCAL_INPUT=local input cache
-export LOCAL_OUTPUT=local output cache
-export SRC_DIR=directory containing Perl scripts
-export SSH_DIR=directory containing secure shell (ssh)
-export LOCAL_NAME=local site name
-export CRONDATE=date of cron job
-export SCP_TRY_X=number of times scp is tried before erroring out On the mSCF only:
-export DB_NAME=name of MYSQL database
-export DB_USER=user name for MYSQL database

Last updated: 3/14/2008 Page 4 Version 200803.0

-export DB_PASSWD=password for MYSQL database
-export LOCK_FILE=Name of lock file

For a local host pushing data to a remote host (i.e. for the mSCF pushing data to the rSCFs):

-export USERNAME=username
-export SRC_DIR=directory containing Perl scripts
-export SSH_DIR=directory containing secure shell (ssh)
-export LOCAL_NAME=local site name
-export CRONDATE=date of cron job
-export SCP_TRY_X=number of times scp is tried before erroring out On the mSCF only:
-export DB_NAME=name of MYSQL database
-export DB_USER=user name for MYSQL database
-export DB_PASSWD=password for MYSQL database
-export LOCK_FILE=Name of lock file

For a local host moving data from the input cache to other subdirectories after data has been
pulled from a remote host (i.e. for the ISF, mSCF, and UTCSR after pulling data from the
ISIPS):

-export LOCAL_NAME=local site name
-export LOCAL_HOST=local host name
-export export SRC_DIR=directory containing Perl scripts
-export LOCAL_NAME=local site name
-export CRONDATE=date of cron job
On the mSCF only:

-export DB_NAME=name of MYSQL database
-export DB_USER=user name for MYSQL database
-export DB_PASSWD=password for MYSQL database
-export REV_FILE_NAME =name of rev file
-export REV_FILE_PATH =path for rev file
-export BIN_PATH =path for readrev executable
-export WEB_PATH =path for rev text file on glas-scfweb
-export TEST=yes (optional - for testing purposes only)

Refer to the SCF Interface Software Installation Guide for local site name information

For a local host moving data from the input cache to other subdirectories after data has been
pushed by a remote host (i.e. for the rSCFs after data has been pushed by the mSCF):

-export USERNAME=username
-export REMOTE_HOST=remote host name
-export REMOTE_INPUT=remote input cache
-export LOCAL_NAME=local site name
-export LOCAL_HOST=local host name
-export LOCAL_INPUT=local input cache
-export LOCAL_OUTPUT=local output cache
-export SRC_DIR=directory containing Perl scripts
-export SSH_DIR=directory containing secure shell (ssh)
-export LOCAL_NAME=local site name
-export CRONDATE=date of cron job

Last updated: 3/14/2008 Page 5 Version 200803.0

Refer to the SCF Interface Software Installation Guide for local site name information

For creating a PDR file (i.e. for the ISF, UTCSR, mSCF, and the rSCFs creating data to be
transferred to another site):

-export LOCAL_NAME=local site name
-export LOCAL_HOST=local host name
-export SRC_DIR=directory containing Perl scripts
On the mSCF only:

-export DB_NAME=name of MYSQL database
-export DB_USER=user name for MYSQL database
-export DB_PASSWD=password for MYSQL database

Last updated: 3/14/2008 Page 6 Version 200803.0

SECTION 4: SCRIPT DESCRIPTIONS

4.1 pull_from_remote.pl: Perl script to pull data from a remote host to
local host

Description
This program searches for XFR files in the remote host output cache. If found, it is
removed from the remote output cache and the associated PDR is pulled to the local
input cache. The PDR is then read and files listed are pulled one at a time to the local
input cache. It then verifies the file statistics in the local input cache with the file
information in the PDR file. It then creates an XFR file in the local input cache denoting
the completion of the file transfer. A PAN and associated XFR are created indicating
the status of the transfer and put into the remote host input cache. If any problems
occur, emails are sent to local personnel explaining the problem in detail.
Execution
-pull_from_remote.pl
Input Arguments
-None
Output
-PAN and XFR
Files Accessed
-Distribution Files
-PDR and XFR
-PAN and XFR
Special Environment
-This program uses environmental variables in .kshrc:
 -USERNAME
 -ISIPS_HOST
 -ISIPS_OUTPUT
 -ISIPS_INPUT
 -LOCAL_INPUT
 -LOCAL_OUTPUT
 -SRC_DIR
 -SSH_DIR
 -LOCAL_NAME
 -CRONDATE
 -SCP_TRY_X
-This program needs openssh to be established.

Last updated: 3/14/2008 Page 7 Version 200803.0

Subroutines Called
- read_pdr_files.pm
- verify_pdr.pm
- create_pan.pm
- send_mail_local.pm
- send_mail_isips.pm
- update_error_table.pm
Error Messages
- Sends email if can't create XFR file:

"Error creating $new_xfr_file\n";
- Sends email if PDR file does not exist:

"$pdr_file does not exist\n";
- Sends email upon error during scp: "Error during scp $pdr_file:\n

$result\n";
Returns
- Returns error to $? on unix: 12 - Can't create XFR file
- Returns error to $? on unix: 16 - Can't create PAN file
- Returns error to $? on unix: 30 – Error during scp

Assumptions
- PDR is accompanied by an XFR file.

Last updated: 3/14/2008 Page 8 Version 200803.0

FIGURE 4-1

4.2 pull_from_remote_lock.pl: Perl script to pull data from a remote
host to local host and create a lock file while pulling data

Description
This program checks for the existence of a lock file in the local input cache indicating
that a data are already being transferred. If one exists, the program exits. If not, then
the program touches a lock file and searches for XFR files in the remote host output
cache. If found, it is removed from the remote output cache and the associated PDR is
pulled to the local input cache. The PDR is then read and files listed are pulled one at a
time to the local input cache. It then verifies the file statistics in the local input cache
with the file information in the PDR file. It then creates an XFR file in the local input
cache denoting the completion of the file transfer. A PAN and associated XFR are
created indicating the status of the transfer and put into the remote host input cache.
The lock file is removed at the end of the program. If any problems occur, emails are
sent to local personnel explaining the problem in detail and the lock file is removed.
Execution
-pull_from_remote_lock.pl
Input Arguments
-None

Last updated: 3/14/2008 Page 9 Version 200803.0

Output
-PAN and XFR
-LOCK_FILE
Files Accessed
-Distribution Files
-PDR and XFR
-PAN and XFR
-LOCK_FILE
Special Environment
-This program uses environmental variables in .kshrc:
 -USERNAME
 -ISIPS_HOST
 -ISIPS_OUTPUT
 -ISIPS_INPUT
 -LOCAL_INPUT
 -LOCAL_OUTPUT
 -SRC_DIR
 -SSH_DIR
 -LOCAL_NAME
 -CRONDATE
 -LOCK_FILE
 -SCP_TRY_X
-This program needs openssh to be established.

Subroutines Called

- read_pdr_files.pm
- verify_pdr.pm
- create_pan.pm
- send_mail_local.pm
- send_mail_isips.pm
- update_error_table.pm
Error Messages
- Sends email if can't create XFR file:

"Error creating $new_xfr_file\n";
- Sends email if PDR file does not exist:

"$pdr_file does not exist\n";
- Sends email upon error during scp: "Error

during scp $pdr_file:\n $result\n";
Returns
- Returns error to $? on unix: 12 - Can't create XFR file

Last updated: 3/14/2008 Page 10 Version 200803.0

- Returns error to $? on unix: 16 - Can't create PAN file
- Returns error to $? on unix: 30 – Error during scp

Assumptions
- PDR is accompanied by an XFR file.
- Uses DIRECTORY_ID keyword in PDR as download directory for all data files.

Default is $input_dir where PDR is.
- Special request data are downloaded to requestID.dist_part subdirectory

FIGURE 4-2

4.3 pull_pan_from_remote.pl: Perl script to pull PAN files from a
remote host to local host

Description
This program searches for PAN.XFR files in the remote host output cache. If found, it is
removed from the remote output cache and the associated PAN is pulled to the local
input cache. It then creates an XFR file in the local input cache denoting the completion

Last updated: 3/14/2008 Page 11 Version 200803.0

of the file transfer. If any problems occur, emails are sent to local personnel explaining
the problem in detail.
Execution
-pull_pan_from_remote.pl
Input Arguments
-None
Output
-PAN XFR
Files Accessed
-PAN and XFR
Special Environment
- This program uses environmental variables in .kshrc:
 - USERNAME
 - ISIPS_HOST
 - ISIPS_OUTPUT
 - LOCAL_INPUT
 - SRC_DIR
 - SSH_DIR
 - LOCAL_NAME
 - CRONDATE
- This program needs openssh to be established.

Subroutines Called

- send_mail_local.pm
- send_mail_isips.pm
- update_error_table.pm
Error Messages
- Sends email if PAN XFR does not exist: "Error removing
${remote_host}:$xfr_file\n $result\n";
- Sends email upon error during scp: "Error during scp $pan_file:\n $result\n";
- Sends email if can't create XFR file:

"Error creating $pan_xfr\n";
Returns
- Returns error to $? on unix: 12 - Can't create XFR file
- Returns error to $? on unix: 30 – Error during scp

Assumptions

- PAN is accompanied by an XFR file.

Last updated: 3/14/2008 Page 12 Version 200803.0

FIGURE 4-3

4.4 push_to_remote.pl: Perl script to push data from the local host to
a remote host

Description
This program searches for PDR files in the local output cache. If one is found and its
corresponding XFR file exists, it verifies the file statistics in the cache with the file
information in the PDR file and if they match, pushes the files to the remote input cache
and creates a new XFR in the remote input cache. If any problems occur, an email is
sent to local personnel explaining the problem in detail.
Execution
-push_to_remote.pl [remote hostname] [local output cache] [remote input cache]
Input Arguments
-The remote host name
-The local output cache
-The remote input cache

Output
-None

Last updated: 3/14/2008 Page 13 Version 200803.0

Files Accessed
-Distribution Files
-PDR and XFR
Special Environment
-This program uses environmental variables in .kshrc:
 -USERNAME
 -SRC_DIR
 -SSH_DIR
 -LOCAL_NAME
 -CRONDATE
 -SCP_TRY_X
-This program needs openssh to be established.

Subroutines Called
-read_pdr_files.pm
-verify_pdr.pm
-send_mail_local.pm
-update_error_table.pm
Error Messages
-Sends email if cannot create XFR file:

"Can't create $new_xfr_file\n";
-Sends email if cannot create tmp directory:

"Can't create $tmpdir\n";
-Sends email upon error during scp:

"Error during scp $pdr_file:\n $result\n";
Returns
-Returns error to $? on unix: 12 - Can't create XFR file
-Returns error to $? on unix: 15 - Can't create tmp directory
-Returns error to $? on unix: 30 – Error during scp

Assumptions
-PDR is accompanied by an XFR file.

Last updated: 3/14/2008 Page 14 Version 200803.0

FIGURE 4-4

4.5 push_to_remote_lock.pl: Perl script to push data from the local
host to a remote host and create a lock file while pushing data

Description
This program checks for the existence of a lock file in the local input cache indicating
that a data are already being transferred. If one exists, the program exits. If not, then
the program touches a lock file and searches for PDR files in the local output cache. If
one is found and its corresponding XFR file exists, it verifies the file statistics in the
cache with the file information in the PDR file and if they match, pushes the files to the
remote input cache and creates a new XFR in the remote input cache. If any problems
occur, an email is sent to local personnel explaining the problem in detail.
Execution
-push_to_remote_lock.pl [remote hostname] [local output cache] [remote input cache]
Input Arguments
-The remote host name
-The local output cache
-The remote input cache

Output
-LOCK_FILE

Last updated: 3/14/2008 Page 15 Version 200803.0

Files Accessed
-Distribution Files
-PDR and XFR
-LOCK_FILE
Special Environment
-This program uses environmental variables in .kshrc:
 -USERNAME
 -SRC_DIR
 -SSH_DIR
 -LOCAL_NAME
 -CRONDATE
 -SCP_TRY_X
 -LOCK_FILE
-This program needs openssh to be established.

Subroutines Called
-read_pdr_files.pm
-verify_pdr.pm
-send_mail_local.pm
-update_error_table.pm
Error Messages
-Sends email if cannot create XFR file:

"Can't create $new_xfr_file\n";
-Sends email if cannot create tmp directory:

"Can't create $tmpdir\n";
-Sends email upon error during scp:

"Error during scp $pdr_file:\n $result\n";
Returns
-Returns error to $? on unix: 12 - Can't create XFR file
-Returns error to $? on unix: 15 - Can't create tmp directory
-Returns error to $? on unix: 30 – Error during scp

Assumptions
-PDR is accompanied by an XFR file.

Last updated: 3/14/2008 Page 16 Version 200803.0

FIGURE 4-5

4.6 files_to_subdir_from_pull.pl: Perl script to move data from local
input cache to local subdirectories after a data pull

Description
After a data pull, this program searches for PDR files in the local input cache. If one is
found and its corresponding XFR file exists, it removes the XFR and verifies the file
statistics in the cache with the file information in the PDR file. If they match, it copies the
data files to a .tmp directory under a subdirectory determined by data type and file type
or by the subdirectory specified with the SUBDIR keyword in the PDR. The file statistics
in the subdirectory are verified with the file information in the PDR file and if they match,
it moves the files from the .tmp directory to the subdirectory and removes the data files
along with the PDR file from the input cache. If any problems occur, an email is sent to
local personnel explaining the problem in detail.
Execution
-files_to_subdir_from_pull.pl [input cache]
Input Arguments

Last updated: 3/14/2008 Page 17 Version 200803.0

-Input cache
Output
- None
Files Accessed
- Distribution Files
- PDR and XFR
Special Environment
- This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- CRONDATE

Subroutines Called
- read_pdr_files.pm
- verify_pdr.pm
- get_subdir.pm
- send_mail_local.pm
- update_error_table.pm
Error Messages
- Sends email if cannot create subdirectory (if it doesn’t exist):

"Can't create $subdir\n";
- Sends email if cannot create .tmp directory under subdirectory:

"Can't create $tmpdir\n";
- Sends email if file size does not match PDR value: "Error!\n

File size for ${subdir}/$filename: $fsize\n" .
" does not match file size in $pdr_file: $filesize\n";

- Sends email if number of files does not match PDR value:
"Error!\n Number files with correct file sizes" .
" in subdirectories: $copy_ctr \n" .
" does not match number files in $pdr_file: $filenum\n";

- Sends email if PDR indicates that filenum=0:
"Filenum=0 for $pdr_file\n";

Returns
- Returns error to $? on unix: 15 - Can't create subdirectory
Assumptions

Last updated: 3/14/2008 Page 18 Version 200803.0

- PDR is accompanied by an XFR file

- Needs distribution ID or request ID to create unique .tmp directory name.

FIGURE 4-6

4.7 mscf_files_to_subdir_from_pull.pl: Perl script to move data from
local ISIPS input cache to local subdirectories on the mSCF after a
data pull and create an FN file or PDR file

Description
After a data pull, this program searches for PDR files in the local input cache. If one is
found and its corresponding XFR file exists, it removes the XFR and verifies the file
statistics in the cache with the file information in the PDR file. If they match, it copies the
data files to a .tmp directory under a subdirectory determined by data type and file type
or by the subdirectory specified with the SUBDIR keyword in the PDR. The file statistics
in the subdirectory are verified with the file information in the PDR file and if they match,
it moves the files from the .tmp directory to the subdirectory and removes the data files
along with the PDR file from the input cache. If the PDR indicates that the number of files is
0, the PDR is still moved to the special requests directory and an FN file is created. If any
problems occur, an email is sent to local personnel explaining the problem in detail. In

Last updated: 3/14/2008 Page 19 Version 200803.0

the subdirectory, it creates an FN file for distribution ID listing file names in the
distribution. The FN file name is "FN.DISTRIBUTION_ID.txt" for subscriptions or
"FN.REQUEST_ID.txt" for special requests. A special case is for files moved to a
distribution cache; in this case a PDR is created rather than an FN file. If a file only
contains headers, it is moved to DELETED_DATA_PATH and the file name written to
DEL_HEAD_FILE.
Execution
-mscf_files_to_subdir_from_pull.pl
Input Arguments
-Input cache
Output
-None
Files Accessed
-Distribution Files
-PDR and XFR
-FN file or PDR [input cache]
Special Environment
-This program uses environmental variables in .kshrc:

-SRC_DIR
-LOCAL_NAME
-CRONDATE
-REV_FILE_NAME
-REV_FILE_PATH
-BIN_PATH
-DEL_FILE
-TEST (=yes; optional for testing purposes)
- DEL_HEAD_FILE
- DELETED_DATA_PATH

Subroutines Called
-read_pdr_files.pm
-verify_pdr.pm
-get_subdir.pm
-read_keyword.pm
-send_mail_local.pm
-create_pdr_input
-update_dist_file_table.pm
-update_error_table.pm
Error Messages
-Sends email if cannot create subdirectory (if it doesn’t exist):

"Can't create $subdir\n";

Last updated: 3/14/2008 Page 20 Version 200803.0

-Sends email if cannot create .tmp directory under subdirectory:
"Can't create $tmpdir\n";

-Sends email if file size does not match PDR value:
"Error!\n File size for ${subdir}/$filename: $fsize\n" .
" does not match file size in $pdr_file: $filesize\n";

-Sends email if number of files does not match PDR value:
"Error!\n Number files with correct file sizes" .
" in subdirectories: $copy_ctr \n" .
" does not match number files in $pdr_file: $filenum\n";

- Sends email if cannot create FN file:
" Error creating $fn_file\n";

- Sends email if cannot create PDR file:
"Error creating PDR for $filename\n";

- Sends email if PDR indicates that filenum=0:
"Filenum=0 for $pdr_file\n";

Returns
- Returns error to $? on unix: 15 - Can't create subdirectory
- Returns error to $? on unix: 18 - Can't create FN file
- Returns error to $? on unix: 21 - Can't create PDR file

Assumptions
- PDR is accompanied by an XFR file
- Needs distribution ID or request ID to create unique .tmp directory name.
- A special request to the I-SIPS will be distributed back to the mSCF under one

distribution ID
- If $subdir starts with “/SCF/dist” a PDR is created in the subdirectory instead of an

FN file
- Special request data are in requestID.dist_part subdirectory

Last updated: 3/14/2008 Page 21 Version 200803.0

FIGURE 4-7

4.8 files_to_subdir_from_push.pl: Perl script to move data from the
local input cache to local subdirectories after a data push

Description
After a data push, this program searches for PDR files in the local input cache. If one is

Last updated: 3/14/2008 Page 22 Version 200803.0

found and its corresponding XFR file exists, it removes the XFR and verifies the file
statistics in the cache with the file information in the PDR file. If they match, it copies
the data files to a .tmp directory under the subdirectory determined by data type and file
type or by the subdirectory specified with the SUBDIR keyword in the PDR. A PAN and
associated XFR are created indicating the status of the transfer and put into the input
cache of the remote host where the files originally came from. The file statistics in the
subdirectory are verified with the file information in the PDR file and if they match, it
moves the files from the .tmp directory to the subdirectory and removes the data files
along with the PDR file from the local input cache. If the file ends in .gz, the file is
gunzipped. If any problems occur, an email is sent to local personnel explaining the
problem in detail.

Execution
-files_to_subdir_from_push.pl
Input Arguments
-None
Output
-PAN and XFR
Files Accessed
-Distribution Files
-PDR and XFR
-PAN and XFR
Special Environment
-This program uses environmental variables in .kshrc:
 -USERNAME
 -REMOTE_HOST
 -REMOTE_INPUT
 -LOCAL_INPUT
 -LOCAL_OUTPUT
 -SRC_DIR
 -SSH_DIR
 -LOCAL_NAME
 -CRONDATE
-This program needs openssh to be established.

Subroutines Called
-read_pdr_files.pm
-verify_pdr.pm
-create_pan.pm
-get_subdir.pm
-send_mail_local.pm
-update_error_table.pm

Last updated: 3/14/2008 Page 23 Version 200803.0

-untar.ksh
Error Messages
- Sends email if cannot create subdirectory (if it doesn’t exist):

"Can't create $subdir\n";
- Sends email if cannot create .tmp directory under subdirectory:

"Can't create $tmpdir\n"
- Sends email if file size does not match PDR value:

"Error!\n File size for ${subdir}/$filename: $fsize\n" .
" does not match file size in $pdr_file: $filesize\n"

- Sends email if number of files does not match PDR value:
"Error!\n Number files with correct file sizes" .
" in subdirectories: $copy_ctr \n" .
" does not match number files in $pdr_file: $filenum\n"

- Sends email upon error during scp: "Error during
scp $pdr_file:\n $result\n";

Returns
- Returns error to $? on unix: 15 - Can't create subdirectory
- Returns error to $? on unix: 16 - Can't create PAN file
- Returns error to $? on unix: 30 – Error during scp

Assumptions
- PDR is accompanied by an XFR file

- Needs distribution ID or request ID to create unique .tmp directory name.

Last updated: 3/14/2008 Page 24 Version 200803.0

FIGURE 4-8

4.9 read_fn_file.pl: Perl script to read an FN file and create an XFR file
if all the files in the distribution are in the subdirectory

Description
This program searches for FN files in the input directory. When one is found, it checks
for the existence of an XFR file. If none exists, it reads the FN file and determines if all
the files in the distribution are in the subdirectory. If so, an XFR is created denoting the
completion of the distribution. If any problems occur, an email is sent to local personnel
explaining the problem in detail.
Execution

Last updated: 3/14/2008 Page 25 Version 200803.0

-read_fn_file.pl [input cache]

Input Arguments
-Input cache
Output
-FN XFR
Files Accessed
-FN File
-FN XFR

Special Environment
-This program uses environmental variables in .kshrc:

-SRC_DIR
-LOCAL_NAME
-CRONDATE

Subroutines Called
-send_mail_local.pm
-update_error_table.pm
Error Messages
-Sends email if cannot create XFR file:

"Error creating $xfr_file\n"
-Sends email if number PDRs exceeds total number expected in distribution:

"Number PDRs $pdr_cnt > total number $total_dist for dist ID $dist_id\n"
Returns
-Returns error to $? on unix: 19 - Can't create FN XFR file
-Returns error to $? on unix: 20 - PDR count > total number expected in distribution

Assumptions
-FN file follows format outlined in the "File Descriptions" section

Last updated: 3/14/2008 Page 26 Version 200803.0

FIGURE 4-9

4.10 create_pdr.pl: Perl script to create a PDR file for a
 distribution set

Description
This program reads a PDR Input File and generates a PDR file and an XFR file
denoting the completion of the PDR file. The script creates the PDR file name
"LOCAL_NAME.DISTRIBUTION_ID.PDR" or if a distribution ID is not available,
"LOCAL_NAME.REQUEST_ID.PDR". If any problems occur, an email is sent to local
personnel explaining the problem in detail. If the optional data date is given, it is
inserted into the TIME_STAMP key value rather than the current date.
Execution
-create_pdr.pl [PDR_input_file] [data_date]
Input Arguments
-PDR Input File
-Data Date (optional)
Output
-PDR and XFR
Files Accessed

Last updated: 3/14/2008 Page 27 Version 200803.0

-PDR Input File
-Distribution Files
-PDR and XFR
Special Environment
-This program uses environmental variables in .kshrc:

-SRC_DIR
-LOCAL_NAME
-LOCAL_HOST

Subroutines Called
-read_keyword.pm
-get_cksum.pm
-send_mail_local.pm
-update_error_table.pm
Error Messages
-Sends email if cannot open input file:

"Error opening $input_file\n";
-Sends email if cannot create PDR file:

"Error creating $pdr_file\n"
-Sends email if cannot create XFR file:

"Error creating $xfr_file\n"
Returns
-Returns error to $? on unix: 10 - Can't open input file
-Returns error to $? on unix: 11 - Can't create PDR file
-Returns error to $? on unix: 12 - Can't create XFR file

Assumptions
-PDR Input file follows format outlined in the "File Descriptions" section
-PDR follows format outlined in the "File Descriptions" section

-Files are in same directory as input file

Last updated: 3/14/2008 Page 28 Version 200803.0

FIGURE 4-10

4.11 create_pdr_gzip.pl: Perl script to create a PDR file for a
distribution set

Description
This program reads a PDR Input File and generates a PDR file and an XFR file
denoting the completion of the PDR file. The script creates the PDR file name
"LOCAL_NAME.DISTRIBUTION_ID.PDR" or if a distribution ID is not available,
"LOCAL_NAME.REQUEST_ID.PDR". If a file is > 500 MB, it gzips the file. If any
problems occur, an email is sent to local personnel explaining the problem in detail. If
the optional number to distinguish PDR is given, it is inserted into the PDR file name.
Execution
-create_pdr_gzip.pl [PDR_input_file] [number to distinguish PDR]
Input Arguments
-PDR Input File
-Number to distinguish PDR (optional)
Output
-PDR and XFR
-Files > 500 MB are gzipped and renamed with .gz file extension
Files Accessed

Last updated: 3/14/2008 Page 29 Version 200803.0

-PDR Input File
-Distribution Files
-PDR and XFR
-Files > 500 MB
Special Environment
-This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- LOCAL_HOST
- GZIP_DIR

Subroutines Called
-read_keyword.pm
-get_cksum.pm
-send_mail_local.pm
-update_error_table.pm
Error Messages
-Sends email if cannot open input file:

"Error opening $input_file\n";
-Sends email if cannot create PDR file:

"Error creating $pdr_file\n"
-Sends email if cannot create XFR file:

"Error creating $xfr_file\n"
Returns
-Returns error to $? on unix: 10 - Can't open input file
-Returns error to $? on unix: 11 - Can't create PDR file
-Returns error to $? on unix: 12 - Can't create XFR file

Assumptions
-PDR Input file follows format outlined in the "File Descriptions" section
-PDR follows format outlined in the "File Descriptions" section

-Files are in same directory as input file
-Gzip and gunzip accessible from the command line

4.12 check_for_pan.pl: Perl script to read PAN in input cache and
remove files listed in corresponding PDR from output cache.

Last updated: 3/14/2008 Page 30 Version 200803.0

Description
This program searches for PAN files in the local input cache. When one is found and its
corresponding XFR files exists, and it indicates a successful transfer, it reads the
corresponding PDR file in the local output cache and removes the files from the output
cache. It then removes the PDR from the output cache and the PAN and XFR from the
input cache. If any problems occur, an email is sent to local personnel explaining the
problem in detail.
Execution
-check_for_pan.pl [input cache] [output cache]
Input Arguments
-Local input cache
-Local output cache

Output
-None
Files Accessed
-Distribution Files
-PDR
-PAN and XFR
Special Environment
-This program uses environmental variables in .kshrc:

-SRC_DIR
-LOCAL_NAME
-CRONDATE

Subroutines Called
-read_pdr_files.pm
-send_mail_local.pm
-update_error_table.pm
Error Messages
-Sends email if PDR file does not exist:

"$pdr_file does not exist\n";
-Sends email if PAN file does not indicate successful transfer:

"$pan_file does not indicate successful transfer\n";
Returns
-None
Assumptions
-PAN is accompanied by an XFR file and has a corresponding PDR.

Last updated: 3/14/2008 Page 31 Version 200803.0

FIGURE 4-11

4.13 update_rev_file.pl: Perl script to update rev file and send to
remote sites.

Description
This program searches for FN files in the input directory. When one is found, it checks
for an ANC28 file name and if found, it overwrites the rev file and transfers it to the
remote sites. It also creates a special rev text file that it transfers to the SCF websites.

Execution
-update_rev_file [directory with rev file]
Input Arguments
-directory with rev file
Output
-None
Files Accessed
-Rev file
Special Environment
-This program uses environmental variables in .kshrc:

Last updated: 3/14/2008 Page 32 Version 200803.0

-SRC_DIR
-LOCAL_NAME
- REV_FILE_NAME
- REV_FILE_PATH
- BIN_PATH
- WEB_PATH
- CRONDATE

Subroutines Called
- send_mail_local.pm
- update_error_table.pm
- create_rev_text.pm
- scp_rev_file.ksh
- scp_file_web.ksh

Error Messages
- Sends email upon error during scp: "Error during scp $rev_file to remote sites:\n

$result\n";
Returns
- Returns error to $? on unix: 30 – Error during scp
Assumptions
- anc06summary.txt file is not pulled from I-SIPS more than once per hour.

4.14 pull_anc06_from_remote.pl: Perl script to transfer
anc06summary.txt file from I-SIPS to mSCF.

Description
This program searches for anc06summary.txt in the remote output directory. If found, it
is transfered to the /SCF/science_QA directory. It renames it with the date and hour so
that the file is not overwritten. No PDR, XFR, or PAN is used in this transfer.

Execution
- pull_anc06_from_remote
Input Arguments
- None
Output
- yyyy-mm-dd-hh.anc06summary.txt

Last updated: 3/14/2008 Page 33 Version 200803.0

Files Accessed
- anc06summary.txt
Special Environment
- This program uses environmental variables in .kshrc:

- USERNAME
- ISIPS_HOST
- ISIPS_OUTPUT
- LOCAL_INPUT
- SRC_DIR
- SSH_DIR
- LOCAL_NAME
- FILENAME

Subroutines Called
- send_mail_local.pm
- update_error_table.pm
Error Messages
- Sends email upon error during scp: "Error

during scp ${anc06_file}:\n $result\n";
Returns
- Returns error to $? on unix: 30 – Error during scp
Assumptions
- anc06summary.txt file is not pulled from I-SIPS more than once per hour.

4.15 read_pdr_files.pm: Perl script that reads PDR file and returns file
information

Description
This program reads a PDR file until it reaches the end of a file spec block or the end of
file. If any problems occur, an email is sent to local personnel explaining the problem in
detail.
Execution
- $status = read_pdr_files (pdr_filename)
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- The PDR path/name

Last updated: 3/14/2008 Page 34 Version 200803.0

Output
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $dist_id, $request_id, $data_type, $file_type, $filenum, $old_subdir,
$filename, $filesize, $chksum, $dir_id, $dist_part, $time_stamp, $proc_type, and
$err_index.

Files Accessed
- PDR
Special Environment
- This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- CRONDATE

Subroutines Called
- read_keyword.pm
- send_mail_local.pm
- update_error_table.pm
Error Messages
- Sends email if error opening PDR:

"Error opening $pdr_file\n"
- Sends email if number of files has not been read from PDR:

"Number of files has not been read from $pdr_file\n"
Returns
- Returns error to $? on unix: 13 - Can't open PDR file
- If a file spec block has been read it returns 1.
- If completed reading the PDR it returns 2.
- If number of files is 0 it returns 3.
- If number of files has not been read from PDR it returns 4.

Assumptions
- PDR follows format outlined in the "File Descriptions" section

4.16 verify_pdr.pm: Perl script that verifies distribution set against
information in the PDR file

Description
This subroutine reads a PDR file and verifies that the files listed in the PDR are present
and that file sizes are correct. If any problems occur, an email is sent to local personnel

Last updated: 3/14/2008 Page 35 Version 200803.0

explaining the problem in detail.
Execution
- $error = verify_pdr (pdr_filename)
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- The PDR path/name
- (Optional) data directory use flag – indicates whether the data directory argument
should be used as the data path. Missing or 0 = no, 1 = yes.
- (Optional) data directory – Path for data if not the same as for PDR. Not used if
data directory use flag is missing or 0.

Output
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $request_id, $filenum, $dist_id, and $err_index.

Files Accessed
- Distribution Files
- PDR
Special Environment
- This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- CRONDATE

Subroutines Called
- read_keyword.pm
- send_mail_local.pm
- update_error_table.pm
Error Messages
- Sends email if error opening PDR:

"Error opening $pdr_file\n"
- Sends email if file does not exist:

"Error!\n File does not exist: $filename\n"
- Sends email if file size does not match PDR value:

"Error!\n File size for $filename: $fsize\n" .
" does not match file size in $pdr_file: $filesize\n"

- Sends email if number of files does not match PDR value:

Last updated: 3/14/2008 Page 36 Version 200803.0

"Error!\n Number of files in $data_path: $file_ctr\n" .
" does not match number in $pdr_file: $filenum\n"

- Sends email if PDR verification did not pass all tests:
"Error!\n Only $test_ctr tests out of $num_tests passed" .
" for $pdr_file\n";

- Sends email if number of files in PDR is 0 if subscription:
"Error!\n $pdr_file is for a subscription\n" .
" and number of files is 0\n"

Returns
- Returns error to $? on unix: 13 - Can't open PDR file
- Normal completion returns 0
- If number of files in PDR is 0 it returns 3
- Error condition returns 4:
- File does not exist
- File size does not match PDR value

- Number of files does not match PDR value
- PDR verification did not pass all tests

Assumptions
- PDR follows format outlined in the "File Descriptions" section
- Files are in same directory as PDR file unless optional arguments are used.

4.17 create_pan.pm: Perl script that creates a PAN file

Description
This program creates a pan file indicating the status of the file transfer. The name of
the PAN is the same as its corresponding PDR file, but ends with the extension ".PAN"
rather than ".PDR". It also creates an XFR file denoting the completion of the pan file. If
any problems occur, an email is sent to local personnel explaining the problem in detail.
Execution
- $pan_err = create_pan (pdr_filename, error_index);
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments

Last updated: 3/14/2008 Page 37 Version 200803.0

- PDR file name
- Error index
The error index determines the PAN disposition:

 if error index = 0 then disposition = "SUCCESSFUL";
if error index = 1 then disposition = "INCORRECT NUMBER OF FILES";
if error index = 2 then disposition = "POST-TRANSFER FILE SIZE CHECK FAILURE";
if error index = 3 then disposition = "FILE I/O ERROR";
 if error index = 4 then disposition = "ALL FILE GROUPS/FILES NOT FOUND";

Output
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $pan_file and $pan_xfr.

Files Accessed
- PDR
- PAN and XFR
Special Environment
- This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- CRONDATE

Subroutines Called
- send_mail_local.pm
- update_error_table.pm
Error Messages
- Sends email if error creating PAN:

" Error creating $pan_file \n"
- Sends email if error creating XFR:

" Error creating $pan_xfr\n"
Returns
- Returns 0 - normal return
- Returns error 16 - Can't create PAN file
- Returns error 17 - Can't create XFR file

Assumptions
- PAN follows format outlined in the "File Descriptions" section

Last updated: 3/14/2008 Page 38 Version 200803.0

4.18 create_pdr_input.pm: Perl script to create PDR input file.

Description
This program creates a pdr input file and calls create_pdr.pl to create the PDR for one
file. If any problems occur, an email is sent to local personnel explaining the problem in
detail.
Execution
- $error = create_pdr_input (directory, file name, request ID, distribution ID,

subdirectory, data_type, file_type)
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- Directory where PDR input file should be created
- File to be transferred
- Request ID
- Distribution ID
- Subdirectory
- Data type
- File type
- Data date
Output
- PDR and XFR (from create_pdr.pl)
Files Accessed
- PDR input file
Special Environment
- This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- CRONDATE

Subroutines Called
- send_mail_local.pm
- update_error_table.pm
- create_pdr.pl (executed on the command line)
Error Messages
- Sends email if error creating PDR input file:

“Error creating $infile\n";
Returns
- Returns error 16 - Can't create PDR input file

- Normal completion returns 0

Last updated: 3/14/2008 Page 39 Version 200803.0

Assumptions
- Only one file is input.

4.19 get_subdir.pm: Perl script that determines subdirectory based on
information in the PDR File

Description
This subroutine determines subdirectory based upon data type and file type or by the
subdirectory specified with the SUBDIR keyword in the PDR.
Execution
- get_subdir (pdr_subdir, data_type, file_type, request_id);
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- Subdirectory from PDR or " "
- Data type from PDR
- File type from PDR
- Request ID from PDR
Output
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $subdir.

Files Accessed
- None
Special Environment
- This program uses environmental variables in .kshrc:

- LOCAL_NAME
Subroutines Called
- None
Error Messages
- None
Returns
- None
Assumptions
- If a request ID is not “ “, the data are for a special request. If not, then the data are

Last updated: 3/14/2008 Page 40 Version 200803.0

for a subscription.

4.20 read_keyword.pm: Perl script that reads a line and separates the
value from the keyword

Description
This subroutine reads the input line and separates the value from the keyword.
Execution
- $res = read_keyword ($line);
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- Line (string)

Output
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $keyword, $keyvalue.

Files Accessed
- None
Special Environment
- None
Subroutines Called
- None
Error Messages
- None
Returns
- If the line follows the standard GLAS header format it returns 0.
- If the line does not follow the standard GLAS header format it returns -1.

Assumptions
- If the line is to be parsed it must follow the standard GLAS header format:

keyword = value;

White space doesn't matter. This format is used for headers, PDR’s, POR’s, and
PAN’s.

Last updated: 3/14/2008 Page 41 Version 200803.0

4.21 get_cksum.pm: Perl script that gets the file size and checksum
for the input file

Description
This subroutine uses the UNIX “cksum” to get the file size and checksum for the input
file.
Execution
- $res = get_cksum ($filename);
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- File name

Output
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $checksum, $fsize.

Files Accessed
- Input file
Special Environment
- None
Subroutines Called
-None
Error Messages
-None
Returns
-If the cksum is successful it returns 0.
-If the file does not exist it returns -1.

Assumptions
-None

4.22 send_mail_local.pm: Perl script that sends mail to local
personnel

Last updated: 3/14/2008 Page 42 Version 200803.0

Description
This subroutine sends mail to local personnel
Execution
-send_mail_local (message, subject_line)
-This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
-Message
-Subject line
Output
-None
Files Accessed
-None
Special Environment
-None
Subroutines Called
-None
Error Messages
-None
Returns
-None
Assumptions
-Contains loop for several email addresses

4.23 send_mail_isips.pm: Perl script that sends mail to I-SIPS
personnel

Description
This subroutine sends mail to I-SIPS personnel
Execution
-send_mail_isips (message, subject_line)
-This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
-Message
-Subject line

Last updated: 3/14/2008 Page 43 Version 200803.0

Output
-None
Files Accessed
-None
Special Environment
-None
Subroutines Called
-None
Error Messages
-None
Returns
-None
Assumptions
-Contains loop for several email addresses

4.24 send_mail_user.pl: Perl script that sends mail to input email
address

Description
This subroutine sends mail to input email address
Execution
-send_mail_local (email_address, file_with_message, subject_line)
-This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
-Email address
-File with message
-Subject line
Output
-None
Files Accessed
-File with message
Special Environment
-None

Last updated: 3/14/2008 Page 44 Version 200803.0

Subroutines Called
-None
Error Messages
-None
Returns
-None
Assumptions
-None

4.25 update_error_table.pm: Perl script that updates the ERROR table
in the MYSQL database with error message

Description
This subroutine updates the ERROR table in the MYSQL database with error message.
Execution
-update_error_table (proc_name, dist_id, request_id, error_message);
-This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
-Procedure name
-Distribution ID
-Request ID
-Error Message
Output
-None
Files Accessed
-None
Special Environment
 -This program uses environmental variables in .kshrc:
 -DB_NAME
 -DB_USER
 -DB_PASSWD
-This routine will only update the database table if it is run at the mSCF

Subroutines Called
-None

Last updated: 3/14/2008 Page 45 Version 200803.0

Error Messages
-None
Returns
-None

4.26 update_dist_file_table.pm: Perl script that updates the
DISTRIBUTION_FILES table in the MYSQL database with distribution
file information

Description
This subroutine updates the DISTRIBUTION_FILES table in the MYSQL database with
distribution file information.
Execution
-update_dist_file_table ($requestID, $filename, $file_size);
-This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
-Request ID
-File name
-File size

Output
-None
Files Accessed
-None
Special Environment
 -This program uses environmental variables in .kshrc:
 -DB_NAME
 -DB_USER
 -DB_PASSWD
-This routine will only update the database table if it is run at the mSCF

Subroutines Called
- None
Error Messages
- None
Returns

Last updated: 3/14/2008 Page 46 Version 200803.0

- None

4.27 create_rev_text.pm: Perl script that reads the rev file and creates
a text file for SCF website

Description
This subroutine reads the rev file and calls datecon2003 to create a text file for SCF
website. If any problems occur, an email is sent to local personnel explaining the
problem in detail.
Execution
- $error = create_rev_text ($txt_file);
- This is a Perl subroutine; it can only be called from a Perl routine
Input Arguments
- Rev text file (Text output from readrev of rev file)
Output
- Web text file: text file containing rev information plus date/time and day of year from

datecon2003 for use on SCF website
- The following variables are the output from this script, yet are not included in the

argument list because in Perl, the subroutine variables are global to the routine
calling it: $web_text_file.

Files Accessed
- Rev text file
- Web text file
Special Environment
- This program uses environmental variables in .kshrc:

- SRC_DIR
- LOCAL_NAME
- BIN_PATH
- CRONDATE

Subroutines Called
- send_mail_local.pm
- update_error_table.pm

Error Messages
- Sends email if error opening input file: “Error creating $rev_text_file\n";
- Sends email if error creating output file: “Error creating $web_text_file\n";

Returns

Last updated: 3/14/2008 Page 47 Version 200803.0

- Returns error 13 - Can't open input file
- Returns error 16 - Can't create output file

- Normal completion returns 0
Assumptions
- Input rev text file is text output from readrev run on the rev file

4.28 scp_rev_files.ksh: Korn shell script that transfers a file to remote
sites

Execution
- scp_rev_file.ksh input_directory rev_file
Input Arguments
- Directory with rev file

- Rev file name
Output
- Rev files on remote sites
Assumptions
This script was written to transfer the rev file, but will transfer any input file that resides
in the same named directory on the remote site as it does on the local site. The file is
transferred to the following remote sites: ALT, LIDAR, MIT, NSIDC, OSU, UCSD,
UTCSR, UW, and WFF. Refer to the SCF Interface Software Installation Guide for a
description of the remote site names.

4.29 scp_file_web.ksh: Korn shell script that transfers a file to SCF
websites only

Execution
- scp_file_web.ksh input_directory output_directory file
Input Arguments
- Directory for file on local host
- Directory for file on SCF website

Last updated: 3/14/2008 Page 48 Version 200803.0

-File name
Output
-File is put on glas-scfweb and glas-scfweb2

4.30 untar.ksh: Korn shell script that untars a tar file

Execution
-untar.ksh directory tar_file
Input Arguments
-Directory to untar from
-Tar file name
Output
-Resultant subdirectories and files from tar file

4.31 hdf_to_png.ksh: Korn shell script that calls an IDL routine to
convert an HDF file to one or more PNG files

Execution
-hdf_to_png.ksh input_directory HDF_file
Input Arguments
-Directory with HDF file
-HDF file name
Output
-PNG file(s) created from HDF file (from IDL script)
Routines Called
-/SCF/IDL/lib/utilities/hdf2png.pro
Assumptions
This script was written to work on icesat0 only.

Last updated: 3/14/2008 Page 49 Version 200803.0

4.32 hdf2png.pro: IDL routine that converts an HDF file to one or more
PNG files

Execution
-hdf2png, HDF_file, PNG_file
Input Arguments
-HDF file name
-PNG file name
Output
-PNG file(s) created from HDF file
Assumptions
This is an IDL routine and can only be invoked using a licensed version of IDL

Last updated: 3/14/2008 Page 50 Version 200803.0

SECTION 5: FILE DESCRIPTIONS

5.1 PDR Description
When a distribution set is created, a Product Delivery Record (PDR) is created which
contains benchmark information about the files contained in the distribution set. The
format of the PDR is defined in the SCF Interface Control Document.

5.2 Typical PDR
ORIGINATING_SYSTEM = MSCF;
DISTRIBUTION_ID = 3456;
REQUEST_ID = r4884;
TOTAL_FILE_COUNT = 3;
TIME_STAMP = 2001-09-05T21:55:10Z;

OBJECT = FILE_GROUP;
SUBDIR = /SCF/product_sets/test1;
DATA_TYPE = GLA05;
DATA_VERSION = 2;
NODE_NAME = icesat0.gsfc.nasa.gov;

OBJECT = FILE_SPEC;
DIRECTORY_ID = /SCF/dist/test;
FILE_ID = BNA_00010113_r4884.01_00;
FILE_TYPE = ANCILLARY;
FILE_SIZE = 3192;
FILE_CHKSUM = 2763299332;
START_TIME = 2001-10-17T19:51:06Z;
END_TIME = 2001-11-17T02:23:22Z;

END_OBJECT = FILE_SPEC;

END_OBJECT = FILE_GROUP;

OBJECT = FILE_GROUP;
SUBDIR = /SCF/product_sets/test2;
DATA_TYPE = GLA05;
DATA_VERSION = 2;
NODE_NAME = icesat0.gsfc.nasa.gov;

OBJECT = FILE_SPEC;
DIRECTORY_ID = /SCF/dist/test;
FILE_ID = PS05_00010113_r4884.00;
FILE_TYPE = SCIENCE;
FILE_SIZE = 120;

Last updated: 3/14/2008 Page 51 Version 200803.0

FILE_CHKSUM = 1953088526;
START_TIME = 2001-10-17T19:51:06Z;
END_TIME = 2001-11-17T02:23:22Z;

END_OBJECT = FILE_SPEC;

OBJECT = FILE_SPEC;
DIRECTORY_ID = /SCF/dist/test;
FILE_ID = UR05_00010113_r4884.00;

 FILE_TYPE = SCIENCE;
FILE_SIZE = 120;
FILE_CHKSUM = 2217296436;
START_TIME = 2001-10-17T19:51:06Z;
END_TIME = 2001-11-17T02:23:22Z;

END_OBJECT = FILE_SPEC;

END_OBJECT = FILE_GROUP;

Assumptions
-The format is keyword = value
-The above keywords must be used and must be uppercase

-Spaces before and after the "=" are irrelevant
-Each line ends with a semicolon and line feed
-Blank lines are irrelevant
-TOTAL_FILE_COUNT comes before the file names
-There must be either a DISTRIBUTION_ID or a REQUEST_ID
-If no REQUEST_ID exists, then the distribution set is for a subscription
-Optional keywords include SUBDIR, START_TIME, END_TIME

If there are no files in the distribution set because data were not available to create
them, then the PDR may look like this:

ORIGINATING_SYSTEM = MSCF;
REQUEST_ID = r9999;
TIME_STAMP = 2001-09-05T21:55:10Z;
TOTAL_FILE_COUNT = 0;

5.3 PDR Input File Description
The script create_pdr.pl creates a PDR file for a distribution set, but depends upon a
PDR Input File for most of its information. This input file should be created when the
distribution set is completed. The name of the file is irrelevant since it is an input
argument to create_pdr.pl. The table below gives the format:

Last updated: 3/14/2008 Page 52 Version 200803.0

Line # Keyword Value
1 DISTRIBUTION_ID= (optional) Unique distribution ID assigned at the I-SIPS or other institution
2 REQUEST_ID= (optional) Special request ID assigned at the mSCF
3 TOTAL_FILE_COUNT= Number of files in this PDR 1-9999
4 SUBDIR = (optional) Subdirectory where files belong after push or pull for group
5 DATA_TYPE= Data type for group
6 DATA_VERSION= Data version for group
7 FILE_ID= Name of file
8 START_TIME= (optional) Start time of data in yyyy-mm-ddThh:mm:ssZ for file
9 END_TIME= (optional) End time of data in yyyy-mm-ddThh:mm:ssZ for file
10 FILE_TYPE= File type
11-N Repeat of lines 7-10 for each file In the group
N+1 Repeat of lines 4-N for each group In the PDR Input File

Refer to the SCF Interface Control Document for descriptions of data type and file type.

An example of the PDR Input File is as follows:

DISTRIBUTION_ID = 3456;
REQUEST_ID = r4884;
TOTAL_FILE_COUNT = 3;
SUBDIR = /SCF/product_sets/test1;
DATA_TYPE = GLA05;
DATA_VERSION = 2;
FILE_ID = BNA_00010113_r4884.01_00;
START_TIME = 2001-10-17T19:51:06Z;
END_TIME = 2001-11-17T02:23:22Z;
FILE_TYPE = ANCILLARY;
SUBDIR = /SCF/product_sets/test2;
DATA_TYPE = GLA05;
DATA_VERSION = 2;
FILE_ID = PS05_00010113_r4884.00;
START_TIME = 2001-10-17T19:51:06Z;
END_TIME = 2001-11-17T02:23:22Z;
FILE_TYPE = SCIENCE;
FILE_ID = UR05_00010113_r4884.00;
START_TIME = 2001-10-17T19:51:06Z;
END_TIME = 2001-11-17T02:23:22Z;
FILE_TYPE = SCIENCE;

Assumptions
- The format is keyword = value
- The above keywords must be used and must be uppercase

- Spaces before and after the "=" are irrelevant
- Each line ends with a semicolon and line feed
- Blank lines are irrelevant
- There must be either a DISTRIBUTION_ID or a REQUEST_ID

Last updated: 3/14/2008 Page 53 Version 200803.0

- DISTRIBUTION_ID and/or REQUEST_ID come before TOTAL_FILE_COUNT for it
is at this line that the PDR file name is created.

- File group information ends with DATA_VERSION which comes before file spec
information
- File spec information ends with FILE_TYPE.

- Optional keywords include SUBDIR, START_TIME, END_TIME

If there are no files in the distribution set because data were not available to create
them, then a PDR can be created from the following file:

REQUEST_ID = r9999;
TOTAL_FILE_COUNT = 0;

5.4 PAN Description
Below is the PAN created by the script create_pan.pm. The format of the PAN is
outlined in the SCF Interface Control Document. An example is as follows:

MESSAGE_TYPE = SHORTPAN;
TIME_STAMP = 2001-07-11T11:20:57Z;
DISPOSITION = SUCCESSFUL;

If the disposition is "SUCCESSFUL", then the file verification after the data transfer was
correct. If the disposition is something else, then an error occurred during data transfer.
A list of possible disposition messages is in the SCF Interface Control Document.
Assumptions
-The format is keyword = value
-The above keywords must be used and must be uppercase

-Spaces before and after the "=" are irrelevant
-Each line ends with a semicolon and line feed
-Blank lines are irrelevant
-"DISPOSITION = SUCCESSFUL" indicates successful data transfer

5.5 FN File Description
Below is the format of an FN file created by the script mscf_files_to_subdir_from_pull.pl.
This file lists the file names for the distribution ID.

Line # Value
1 ID=Distribution ID or request ID
2 TOTAL_PDRS=Total number of PDRs expected in the distribution
3 Asterisk (*) indicating expedited quick-look processing (optional)

Last updated: 3/14/2008 Page 54 Version 200803.0

4 Percent sign (%) indicating start of file names from first PDR
4-N File names from first PDR
N+1 Repeat of lines 4 – N for each PDR in distribution
Last line x indicating complete FN file

An example is as follows:

ID=r0212;
TOTAL_PDRS=2;
*
%
GLA05_002_1101_001_0028_1_01_01.dat
GLA05_002_1101_001_0028_2_01_01.dat
%
GLA06_002_1101_001_0028_1_01_01.dat
GLA06_002_1101_001_0028_2_01_01.dat
x

The percent signs (%) indicate that files listed below are from a new PDR. The script
read_fn_file.pl adds them up and compares the number with the total number of PDRs
expected in the distribution to determine if the distribution is complete. The x indicates
that the FN file is complete. When the “x” is added to the file, and XFR is created so
that the FN will be picked for processing. Once the XFR has been removed for
processing, the “x” indicates that another XFR should not be created because the file is
already being processed.

Assumptions
- Distribution ID or request ID is on the line with the keyword=value; format where

the keyword is “ID”.
- Total number of PDRs expected in the distribution is on the line with the

keyword=value; format where the keyword is “TOTAL_PDRS”.
- Asterisk (*) indicates expedited processing
- Percent signs (%) indicate a new PDR
- x indicates that the FN file is complete

5.6 Web Rev Text File Description
Below is the format of the web rev text file created by the script create_rev_text.pm.
This file lists the start of each rev in J2000 seconds, date and time, day of year, and
pass ID. It is used by the SCF website for a date conversion GUI.

J2000 secs date time Day of year Pass ID Rev #
 yyyy-mm-dd hh:mm:ss rrrrccctttt

Last updated: 3/14/2008 Page 55 Version 200803.0

J2000 seconds start at 0 on January 1, 2000 at 12 pm UTC.

Pass ID consists of:

rrrr: 4 digit reference orbit

ccc: 3 digit cycle tttt: 4 digit track

For more information on the pass ID refer to the SCF Architectural Design Document.

An example is as follows:

96053104.0 2003-01-17 05:25:04 17 31010010020 63

96058896.0 2003-01-17 07:01:36 17 31010010021 64 …

Last updated: 3/14/2008 Page 56 Version 200803.0

APPENDIX A: ABBREVIATIONS & ACRONYMS

GLAS Geoscience Laser Altimeter System
GSFC Goddard Space Flight Center
ICESat Ice, Cloud, and land Elevation Satellite
ISF Instrument Support Facility
I-SIPS ICESat Science Investigator-led Processing System
LIDAR LIght Detection And Ranging
MIT Massachusetts Institute of Technology
mSCF Main Science Computing Facility
NASA National Aeronautics and Space Administration
OSU Ohio State University
rSCF Remote Science Computing Facility
UCSD University of California at San Diego
UTCSR University of Texas Center for Space Research
UW University of Washington
WFF Wallops Flight Facility

