NASA/TM—2005-209997/VER201205.0/VOL. 3b

ICESat (GLAS) Science Computing
Facility Document Series

Volume 3b
SCF Data Request Software Detailed Design Document
Version 201205.0

Anita Brenner
Tzipi Sidel
Kristine Barbieri

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

May 2012



p.14

p.16

p.17
p.17

p.18

p.20

p.21
p.22
p.24

p.25

p.57
p.57
p.57

Summary of Changes since Version 200112.0

Added the following environmental variables to readMail.ksh:

- ISIPS_DIST

- SPECIAL_REQUEST_PATH

Added update_error_table.tcl.

The following routines call it:

- add_to_log_file.tcl

- daily_stats.tcl

- isips_request.tcl

- parse_mail.tcl

- subscription.tcl

Added to populate_db.tcl description: for subscriptions, if no tracks are specified
orbelect.f90 is called to generate list of 8 or 91 day tracks for mission

Added convert2j2000.tcl. The following routines call it:

- populate_db.tcl

Added find_passID.f90. The following routines call it:

- populate_db.tcl

- data_select.tcl

in data_select.tcl: If request is quick-look, submit the request to ISIPS to get the missing
files and email SCF to get approval form the CCB.

Changed name of create_request_pdr.tcl to create_por.tcl and updated arguments
Changed name of request PDR to Product Order Request (POR) and updated example
Added catch_errors.tcl. The following routines call it:

- run_ds_pc.tcl

Removed read_ref_orbit_ mod.f90. Using one rev file now instead of one for each
reference orbit, so no need for reference orbit file. Removed references to environmental
variable REF_ORBIT_FILE or changed REV_PATH to REV_FILE in the following
scripts and codes:

- populate_db.tcl

- readMail.ksh

- data_select.tcl

- run_subscription.ksh

- subscription.tcl

- isips_request.tcl

- create_binrev.tcl

- create_pass_files.tcl

- write_ds_ctrl.tcl

- run_ds_pc.tcl

- data_select.f90

- read_rev_file.fo0

- read_ds_ctrl_mod.f90

- find_passID.f90

Added subset.tcl

Added sort_unique.tcl

Added find_span.tcl

Last updated: 5/8/2012 Page iii Version 201205.0



p.58  Added zero_padding.tcl

p.58  Added zero_out.tcl

p.64  Added “status” column to ISIPS_SUBSCRIPTIONS table
p.67  Added “filled” column to ISIPS_REQUESTS table

p.68 Removed REFERENCE_ORBIT table from database.

Last updated: 5/8/2012 Page iv Version 201205.0



Summary of Changes since Version 200205.0

p.74 Added QA PRODUCT_UPDATE table to database.

Last updated: 5/8/2012 Page v Version 201205.0



Summary of Changes since Version 200208.0

p.4  Added browser_visualizer.pro
p.9  Modified orbselect.f90
p.13  Added select_processed_tracks.fo0
p.14 time_track.f90
p.16  Added ga_mail.tcl. The following routines call it:
- parse_mail.tcl
p.37 Added prepare_browse.tcl
p.37  Added runbrowse.ksh
p.38 Added gabrowse.pro
p.44  Added compare_lists.tcl. The following routines call it:
- data_select.tcl
p.45  Added Isearch_all_idx.tcl. The following routines call it:
- compare_lists.tcl
p.46  Added the following environmental variables to run_subscription.ksh:
- PROC_8 PASS
- PROC_91 PASS
p.51 Added read_keyword.tcl. The following routines call it:
- read_fn_file.tcl
p. 52 Added another output argument to read_fn_file.tcl: Quick-look indicator
p. 56 Added modify_processed_tracks.tcl. The following routines call it:
- subscription.tcl
p. 57 Added scp_rev_file.ksh. The following routines call it:
- subscription.tcl
p. 65 Added submit_por.tcl.
p. 66 Added submit_ga.tcl.
p. 67 Added create_gauf.tcl. The following routines call it:
- submit_ga.tcl
p.72  Added columns to ISIPS_REQUESTS database table.
p.73  Added columns to ISIPS_DISTRIBUTION database table.
p.74  Added columns to QA_PRODUCT_UPDATE database table.
p.74  Added gl_flag to SPECIAL_REQUEST_ USER database table.

Last updated: 5/8/2012 Page Vi Version 201205.0



Summary of Changes since Version 200212.0

p.20 and p.50 Subscription.tcl and data_select.tcl copies BNAOL to BNAO3 and BNAO4 and
GRAO01 to GRA03 and GRA04.

p.23  Adding release number to routine filter_files_by release_or_version.tcl.
The file gives the latest release number is release=0. Otherwise it gives the files with the given
release number.

p.34 Prod_create.f90 can create GLAO3 or GLAOA4.

p.38  Modified mkpass to retrieve from rev file the passes that associate only with the times
cover by the product file.

p.41  Checking in mkunique_index if the current unique index record is bigger than the last
one. If not, exit with an error message: Index is out of order.

p.43  Mkbinrev exists without creating binrev file when products are GLAO3 or GLAOA4.
p.49  Added the following environmental variables to run_subscription.ksh:

- UPDATE_REV_FLAG

- BROWSE_VERSION

p.50  Subscription.tcl now calls routine filter_files_by release or_version.tcl

p.58  Added sort_pass.tcl. The following routines call it:
- create_binrev.tcl

p.75 Added release to SPECIAL_REQUEST USER database table

p.76  Added status to SUBSCRIPTION_USER database table

Last updated: 5/8/2012 Page Vii Version 201205.0



Summary of Changes since Version 200302.0

p.20  Added send_mail_user.pl. The following routines call it:
- populate_db.tcl

p.24  Added release as input argument to create_por.tcl

p.27 Indata_select.f90, the code is looking to the keyword DATE_STRING in the control
file. If it is there, the out file name contains the date_str in it. If not, the start date is in the
out file name.

p.48  Added send_mail_mscf.pl. The following routines call it:
- check_dist.tcl
- check_ps.tcl
- daily_stats.tcl
- data_select.tcl
- populate_db.tcl
- ga_mail.tcl

p.48 Added send_mail_cch.pl. The following routines call it:
- data_select.tcl
- ga_mail.tcl
p.50 Added LOG_DIRECTORY environmental variable to subscription.tcl

p.50 Added in subscription.tcl and isips_request.tcl a call to database to get beginningDate.
The beginning Date is the date_str in the output file name.

p.50 Added date_str parameter in calling to run_ds_pc.tcl.
p.54  Added log_directory global variable to create_pdr.tcl

p.58 Inrun_ds_pc.tcl, if the length of date_str =8, the DATE_STRING=date_str is added to
the data_select.f90 control file.

p.62  Added check_rev_time.tcl. The following routines call it:
- subscription.tcl

p.63  Added check_pid.tcl. The following routines call it:
- subscription.tcl

p.67 Added LOG_DIRECTORY environmental variable to isips_request.tcl

p.68  Added call to send_mail_mscf.pl to isips_request.tcl

Last updated: 5/8/2012 Page Viii Version 201205.0



p.74  Added send_mail_isips.pl. The following routines call it:
- daily_stats.tcl

p.74  Updated synopsis for daily_stats.tcl
p.78  Added scripts check_dist.tcl and check_ingest.tcl
p.79  Added script check_ps.tcl

p.79  Added send_mail_pager.pl. The following routines call it:
- check_ps.tcl

p.84  Added beginningDate into the ISIPS_PRODUCT _ID table.
p.90 Added “release” column to ISIPS_REQUESTS table
p.90  Add “C=couldn’t fulfill” to ISIPS_REQUESTS “status” column

p.90 Added “release” and “quick_look” columns to ISIPS_DISTRIBUTION table

Last updated: 5/8/2012 Page iX Version 201205.0



p.30

Summary of Changes since Version 200304.0

If the requested area is the whole world, data_select.fo0 doesn’t use the routines that

calculate the bins in a given area .

p.6
p.13

p.29

p.40

p.90

p. 68

p. 50
p. 68
p. 80

p. 81

If the requested area is the whole world, gettracksarray.pro doesn’t excute orbselect.

In select_processed_tracks.f90, when the selected area is the whole world, the output is
all the tracks that were processed.

The date in the rSCF file name is the beginning time of the first file in the 14 rev product
set received from the I-SIPS. This information is given from the file header. If the
keyword from the header could not be found, the date is set to the requested beginning
time.

Now get the first valid value in the 40 Hz array rather than just the first value of the array.

In ISIPS_REQUESTS and ISIPS_DISTRIBUTION tables requestld has been increased
from 5 to 8 chars.

isips_request.tcl: Files downloaded from I-SIPS are placed in tmp directory defined by
environmental variable SPECIAL_REQUEST_TMP/requestiD. An FN file listing the
files and FN XFR are created in the SPECIAL_REQUEST_TMP directory.

Added environmental variable LOCK_FILE to subscription.tcl

Added environmental variable LOCK_FILE to isips_request.tcl

Added environmental variables SSH_DIR and LOCK_FILE check_ps_rscf.tcl

Added script ssh_rsfs.tcl. The following routines call it:
- check_ps_rscf.tcl

Last updated: 5/8/2012 Page X Version 201205.0



Summary of Changes since Version 200306.0

p.85 Added readlStatMail.ksh and parse_istat_mail.tcl scripts
p.93  Added “date” column to DISTRIBUTION_FILES table
p.97 Added TOO_UPDATE table

p.98 Added INSTRUMENT_UPDATE table

Last updated: 5/8/2012 Page Xi Version 201205.0



Summary of Changes since Version 200308.0

p. 16 Added environmental variable DATA _PATH to data_select.tcl

p. 28 Added 1 degree of data to the border of the selected area when processing to ensure that
all the data within geographic range are obtained.

p. 51 Added environmental variable PULL_FILE to subscription.tcl

p. 65 Added script time_sort.tcl. The following routines call it:
- subscription.tcl

p. 80 Added environmental variable PULL_FILE to check_dist.tcl script
p. 83 Added script daily_cleanup.tcl.

p. 83 Added script get_file_j2000.tcl. The following routines call it:
- daily_cleanup.tcl
- subscription.tcl

p. 84 Added script get_pid_j2000.tcl. The following routines call it:
- data_select.tcl

p. 84 Added script check_inst_update.tcl. The following routines call it:
- daily_cleanup.tcl
- subscription.tcl
- data_select.tcl

p. 85 Added environmental variable MAIL_FILE to parse_istat_mail.tcl script
p. 86 Added readStatMail.ksh and parse_stat_mail.tcl scripts
p. 98 Added “j2000sec” column to INSTRUMENT_UPDATE table

p. 99 Added RTSCM_UPDATE table

Last updated: 5/8/2012 Page Xii Version 201205.0



Summary of Changes since Version 200311.0

p. 51 Added environmental variable DEL_FILE to subscription.tcl

Last updated: 5/8/2012 Page Xiii Version 201205.0



p. 16

p. 16

p. 21

p. 52
p.63
p. 87
p. 88

p. 96

Summary of Changes since Version 200401.0

Removed environmental variable DATA_PATH from readMail.ksh for
data_select_req.tcl

Added environmental variable CREATE_POR to readMail.ksh for data_select_req.tcl

Separated data_select.tcl into data_select_req.tcl for fulfilling special requests and
data_select_vis.tcl for running the visualization software

Added assumption to subscription.tcl that there is only one release per distribution 1D
Added output argument $laser to check_rev_time.tcl.

Added run_stat_report.ksh and stat_report.tcl scripts

Added send_mail_report.pl script

Added data_start_j2000 and data_end_j2000 to CREATION database table

Last updated: 5/8/2012 Page Xiv Version 201205.0



p. 23
p. 51
p. 51
p. 51
p. 51

p. 62

p. 81
p. 85

p. 92

Summary of Changes since Version 200403.0
Updated list of IDL routines used by data request and visualization GUI’s
Added input argument subject_line to send_mail_user.pl
Added input argument subject_line to send_mail_mscf.pl
Added input argument subject_line to send_mail_ccb.pl
Removed UPDATE_REV_FLAG environmental variable from subscription.tcl.
Added ICESATVIS_DATA environmental variable to subscription.tcl.
Moved 8 or 91 day processed pass file from being a global variable to an input argument
in modify_processed_tracks.tcl. Also added scp_flag as an output argument. Added
mscf_path and anc_data_path as global variables.
Added input argument subject_line to send_mail_isips.pl

Added environmental variables DEL_FILE and QAP_PATH to daily_cleanup.tcl

Added input argument subject_line to send_mail_report.tcl

. 116 Added Appendix C: File Formats and C.1 REQ File Format

Last updated: 5/8/2012 Page xv Version 201205.0



Summary of Changes since Version 200405.0

p. 53 Added environmental variables WEB_EA DIR, EA_DIR, EA_FLAG, and PT_FLAG to
subscription.tcl

p. 68 Added routine write_ea_ctrl.tcl. The following scripts call it:
- subscription.tcl

p. 68 Added script run_ea.ksh. The following scripts call it:
- write_ea_ctrl.tcl

p. 69 Added script ps_to_png.ksh. The following scripts call it:
- write_ea_ctrl.tcl

p. 70 Added script scp_file_web.ksh. The following scripts call it:
- write_ea_ctrl.tcl

p. 94 Added program prod_trends.f90. The following scripts call it:
- subscription.tcl

p. 96 Added script prod_trends.tcl.

p.96 Added script run_pt.ksh. The following scripts call it:

- prod_trends.tcl

Last updated: 5/8/2012 Page XVi Version 201205.0



Summary of Changes since Version 200408.0
p. 19 Added input argument tmp_dir to parse_mail.tcl
p. 21 Added input arguments tmp_dir and call_cnt to populate_db.tcl
p. 26 Added input argument error_out to data_select_req.tcl
p. 69 Write_ea_ctrl.tcl now outputs wf_plots files
p. 70 Run_ea.ksh now calls scfplots.pro rather than EnergyAnalysis.pro
p. 107 Added the following columns to SUBSCRIPTION_INPUT_FILES database table:
- fileName
- date

- laser_ref
- laser

Last updated: 5/8/2012 Page XVii Version 201205.0



Summary of Changes since Version 200501.0

p.114 Added a new database table: LASER_OPERATION

Summary of Changes since Version 200507.0

p. 67 Added script get_data_directory.tcl. The following scripts call it:
- check rev_time.tcl
- stat_report.tcl

p. 72 Added script update_prod_rel_file.tcl. The following scripts call it:
- subscription.tcl

p. 112 Added the following columns to TOO_UPDATE database table:
- start_lat
- stop_lat
- start_lon
- stop_lon
- station_flag

p. 116 Added the following database tables:
- SUBSCRIPTION_CYCLES
- SUBSCRIPTION_TRACKS
-  SUBSCRIPTION_PRODUCT _SEG

Summary of Changes since Version 200512.0

p. 54 Added environmental variable CURRENT _REFID to subscription.tcl

Summary of Changes since Version 200603.0

p. 54 Added the following environmental variables to subscription.tcl:
— DUP_FLAG
— PLOT_FLAG
— PLOT_FILE

Last updated: 5/8/2012 Page xviii Version 201205.0



Summary of Changes since Version 200605.0
p.9 Added create_subset.tcl
p.16 Orbselect.f90 now calls sort_file.tcl script rather than spawning UNIX sort command
p.25 Added run_create_maps.ksh and subsequent Perl routines to populate_db.tcl

p.55 Added the following environmental variable to the subscription.tcl script:
— CURRENT_LASER

p.58 Added name_flag input argument to create_geo.tcl
p.71 Added laser campaign as input argument to write_ea_ctrl.tcl

p.91 Added the following environmental variables to the daily_cleanup.tcl script:
— PROC1
— PROC2
— PROC3
— ACCESS_DAYS

p.96 Added the CURRENT _LASER environmental variable to the stat_report.tcl script
p.119 Added the following columns to the LASER_OPERATION database table:
— end_cycle

— end_track
— laser_end _time

Last updated: 5/8/2012 Page XiX Version 201205.0



Summary of Changes since Version 200609.0
p.74 Added scfplots.pro under subscription.tcl
p.75 Added energy_analysis2html.pro under subscription.tcl
p.75 Added wf_analysis2html.pro under subscription.tcl
p.76 Moved prod_trends.f90 to under subscription.tcl
p.102 Moved prod_trends.tcl to “SCF Web Software Detailed Design Document”

p.119 Added RTSCM_POINTING database table

Last updated: 5/8/2012 Page xx Version 201205.0



Summary of Changes since Version 200701.0
p.57 Removed the environmental variable PULL_FILE from the subscription.tcl script

p.57 Added the following environmental variables to the subscription.tcl script:
— PROC_FILE1
— PROC_FILE2
- WEB_WF_DIR

p.73 Added environmental variable WEB_WF_DIR as input to write_ea_ctrl.tcl.

p.94 Added the following environmental variables to the check_dist.tcl script:
— PROC_FILE1
— PROC_FILE2
— PUSH_FILE

Last updated: 5/8/2012 Page XXi Version 201205.0



Summary of Changes since Version 200707.0

p.122 Added LASER_GAP MySQL database table

Summary of Changes since Version 200708.0

p.94 Added the following environmental variables to the check_dist.tcl script:
— PROC_FILEG1

p.96 Added the following environmental variables to the check_ps_rscf.tcl script:
— RSCF HOST NAMEs

p.96 In ssh_rscfs.tcl replaced site_flag input argument with host and removed site as output
argument.
Summary of Changes since Version 200801.0
p.112 Removed laser_ref from SUBSCRIPTION_INPUT_FILES table
p.118 Added lindex and laser to INSTRUMENT_UPDATE table
p.119 Removed LASER_OPERATION table

p.122 Removed LASER_GAP database table

Summary of Changes since Version 200803.0
p.31 Removed create por.tcl
p.88 Removed daily_stats.tcl
p.114 Removed ISIPS_REQUESTS database table.

p.115 Removed ISIPS_DISTRIBUTION database table.

Summary of Changes since Version 200804.0
p.103 Removed segment from REQUEST_PRODUCT_SEG table

p.112 Removed segment from SUBSCRIPTION_PRODUCT _SEG table

Last updated: 5/8/2012 Page XXii Version 201205.0



p. 21
p. 54

p. 57
p. 57

Summary of Changes since Version 200807.0
No longer using script update_error_table.tcl
Added read_header_val.fo0

Removed environmental variable EA_FLAG.
Replaced environmental variables PROC_FILE1, PROC_FILE2, PROC_FILEG1 with

PROC_FILE.

p. 57

p. 58
p. 72

p. 86

Added the following environmental variables:

- SAVED DIST DIR

- ACCTEST_DIR

Replaced subscription.tcl with process_data.tcl, process_subs.tcl, process_ea.tcl.

Added routine sub_error.tcl called by process_subs.tcl.

Replaced environmental variables PROC_FILE1, PROC_FILE2, PROC_FILEG1 with

PROC_FILE.

p. 88

p. 90

Added mv_saved_files.tcl called by check ps_rscf.tcl.

Added “Gap Checks” section.

p.105 Added the following columns to the CREATION table:

- data_dir
- laser

- subs_run
-ea_run

p.152 Removed ERROR database table.

Last updated: 5/8/2012 Page xXiii Version 201205.0



Summary of Changes since Version 200808.0

p.106 Added lindex to most MySQL tables

Summary of Changes since Version 200809.0
p.76  Added reference orbit as input argument to write_ea_ctrl.tcl

p.117 Added REQUEST _INPUT_FILES database table

Summary of Changes since Version 200810.0

p.109 Replaced SUBSCRIPTION_INPUT_FILES with SUBSCRIPTION_INPUT_FILES1 and
SUBSCRIPTION_INPUT_FILES?2 database tables.

p.121 Replaced diagram for subscription.tcl with diagram for process_data.tcl

Summary of Changes since Version 200812.0

p.125 Added diagram for process_ea.tcl

Summary of Changes since Version 200901.0
p.68  Added environmental variable CHECK_FULL_PID_FLAG
p.74  Added check_full_pid.tcl called by process_subs.tcl
p.89  Modified check pending_subs.tcl
p.110 Added CREATION table subs_run options W and NF
Summary of Changes since Version 200906.0
p.38  Added routine find_uix_delta_mod.f90 to V5.6 scf common library. Called by

data_select.f90 and mkunique_index.f90

Summary of Changes since Version 200909.0

p.33  Updated control file example and added description of input_files.txt for data_select.fo0.

Last updated: 5/8/2012 Page XXiv Version 201205.0



Summary of Changes since Version 201101.0

p.128 Updated process_subs.tcl flowchart.

Last updated: 5/8/2012 Page XxXv Version 201205.0



Table of Contents

Summary of Changes since Version 200112.0..........cccviiveieeiieiiieseeeseese e se e e sre e sraesees ii
Summary of Changes since Version 200205.0 .........ccciiiiririenieiiee e v
Summary of Changes since Version 200208.0..........ccccvveiiiieiieeineieseese e e e see e sre e seenaes vi
Summary of Changes since Version 200212.0 .........cocereiiiieeneniee et Vil
Summary of Changes since Version 200302.0 ..........cooviieieereeiienieese e e e see e e eee e e viii
Summary of Changes since Version 200304.0 .........ccceuieririeiienieeie et X
Summary of Changes since Version 200306.0...........cccviveieeiieiiieieeieseese e e e see e see e seesees Xi
Summary of Changes since Version 200308.0.........ccceiiririieiiiie e Xii
Summary of Changes since Version 200311.0 ........ccccviieiieieiiesieeie e eee e ee e Xiii
Summary of Changes since Version 200401.0 ........coouiiriiriiiieneeneeie e Xiv
Summary of Changes since Version 200403.0 .........ccoeieeieiieeieeieseesesiee e see e e ee e e enee e XV
Summary of Changes since Version 200405.0 .........cccuiiriieiiiieieenieie e XVi
Summary of Changes since Version 200408.0...........ccoviveieeieiierrsie e se e, XVii
Summary of Changes since Version 200501.0 .........cccoiiriirirniiie e XViii
Summary of Changes since Version 200507.0 .........ccccoiierieiiieieerieseese e seesie e sie e sees XViii
Summary of Changes since Version 200512.0.........ccoeiiiierirninie e XViii
Summary of Changes since Version 200603.0..........cccoiiereiirieeie e seese e se e sees XViii
Summary of Changes since Version 200605.0 ..........cccuuuiiierinienieeneeee e XiX
Summary of Changes since Version 200609.0...........ceiviiieiieeieiiie e se e XX
Summary of Changes since Version 200701.0 .......cccooiiirieriinieneeieeee e XXi
Summary of Changes since Version 200707.0 ........ccccceviereiiieiieeresiee e see e se e e see e XXii
Summary of Changes since Version 200708.0 ..........cccovireririieiiiie e XXii
Summary of Changes since Version 200801.0..........cccovivereiiieiieiieie e see e se e XXii
Summary of Changes since Version 200803.0.........ccccorieiririieriinie e XXil
Summary of Changes since Version 200804.0..........cccoviveieiienieernsie e see e se e e saeens XXii
Summary of Changes since Version 200807.0.........cccoiirierieniniesiesesee et XXiii
Summary of Changes since Version 200808.0...........cccoverieiirieeie e seese e XXV
Summary of Changes since Version 200809.0..........cccoiiriiiieniiie e XXiV
Summary of Changes since Version 200810.0..........cccovieieiiieieeie e se e se e XXV
Summary of Changes since Version 200812.0 .........cccoriiierieiinie e XXiV
Summary of Changes since Version 200901.0..........cccovieieiiieiieie e se e XXV
Summary of Changes since Version 200906.0...........ccooiieieririinieiee e XXiV
Summary of Changes since Version 200909.0..........cccoiveiieiieiieie e se e XXV
Summary of Changes since Version 201101.0.......cccooiiiiiiiiriieiesie e XXV
R | 01 oo [0 Tox 1 o] USSP UPRPRORPRRRRPTN 1
2 Data REQUESE GUI .. ..ottt ettt sttt e e e 3
2.1 INVOCALION ..ttt bbbttt bbbt bbbt s e e 3
2.2 ENVIrONmMENt DEfINITIONS. ........oiiiiiiieiiee e 3
2.3 List and Descriptions of the IDL Routines used by the Data Request GUI ................... 5
2.3.1  OrBSEIECE.FO0 ... ..o et ne s 10

2.3. 1.1 OrbSEIECE MEAIN ..eciiiiiec et 11

2.3.1.2  QBOTET et 12
2.3.1.3  DINIBV o 13
2.3.1.4  create_DIN_CONTIG.....ccuiiiiiiiie s 13

Last updated: 5/8/2012 Page XXVi Version 201205.0



3

4

2.3.1.5  OIDINS ..o e e 14

2.3.1.6  QELLDIN...ooiiee e reenes 14
2.3.2  select_processed_tracks.fO0.........cooiiiieiieiiiie e s 15
2.3.3  select_time traCkS.fO0 ........coiiiiiiiii e e 15
2.3.4  1IME_LraCKS.FO0. ... .o e 16
2.3.5 SOOI _FHECH oo 16
Parsing the Email and Populating the Mysql Data Request Tables..........cccoeeviieiininnnen, 18

3.1 INvoCcation and ENVIFONMENT ..........ooiiiiiiieiee e 19
3.2 Parse Mail scripts parse_MmMail.tCl.........ccoooiiiiiiiiii s 20
3.2.1 XISt CRECK.ECK. ... e 20
32,2 WIIE_OGLICH ..o et e 21
3.2.3 QA MAILLCK..c.eiiice e e 21
3.3 POPUIALE _ADLEC ... e e 22
3.3 SUBSELECL .t 23
3.3.2 SOOIt _UNIQUELICH. ... et ee s 24
3.3.3 FINA_SPANLICH...c.eieieceee e s 24
3.3.4  Zero_padding.iCl.......oo i s 24
KT T2 (o T 01U | 4 (o] FO OSSPSR 24
3.3.6  CONVEIt2J2000.ECH ...veeueeieieieeeie et et 25
3.3.7  fINA_PaSSID.TO0.....cceei e re s 25
3.3.8  SeNd_MAIl_USEI.PI ..o s 25
I o - W =] =T ot A =T 1 (o] PSS 25
3.5 run_create_ MaPS.KSN .. .o s 25
3.5.1  Create _MAPS.Pl ..eceeeieeieciecie et raeneenes 26

3.5.1.1  INIIAHZE _AITAYS. PIM ittt sre e enes 26

3.5.1.2  get_area dateS.PIM....ccuciieieiieiieeie e ste e te et e e re e e ae e nreereenes 27

TR 700 IRC T o <1 A o] oo [0 Tox AE<T=To o] 1 1 [P S R PTRTR 27

TR T80 o = A 1 - T LGS o 0 ST 27

3.5.1.5  gEL CYCIBS. PM. e e 27

3.5.1.6  send_Mail_10Cal.pM .....ccuviiiiieceeee s 28
Create Products for Special REQUESTES ........coouiiieiieiiiie e e 29

4.1  Main script to process special requests: data_select_req.tcl........cccccovvvieiiviieieennene, 30
4.1.1  add_to_10g_FHE.ECH ...ooeee e 31
4.1.2 filter_files_by release_or VErsioN.tCl.........ccccooeiiieiieieiieseec e 31
4.1.3  1SBAICN_AILICH ..o e 32
I Yo ] [0 [0 TRV Z=T €51 o o PSS 32
415 TUN_AS_PCACT ..ttt ettt nae e 32

4.1.5.1  WIIte dS_CEILICH .ooveiiiieieccee e 33

4.1.5.2  CACN_EITOIS.ECL...c.eiieieieieiiee e e 33
4.1.6  data SEIECE.TO0 ....cviiiii e re e 33

4.1.6.1  conSt_SCT_MOU.TA0 .......ooiiiiiiiii e 36

4.1.6.2 ANCT0_SCT MOU.TO0......ciiiiiiiii e e 36

4.1.6.3  ANCT0_MOU.F0......ciiiiiieiieeseeeee et 36

4.1.6.4  filesize_mMOd.fO0........ccoiiiiiii it e 36

4.1.6.5 open_bin_file_mod.fO0........ccoiiiiii 36

4.1.6.6  ThiNS MO0 ......coiiiiiiie e 36

Last updated: 5/8/2012 Page XxVii Version 201205.0



4.1.6.7 common_files_ MOd.fO0 ........ccoiiiiie e 36

4.1.6.8 read _ds Ctrl_ mod.fO0 ......cooviiiiiee 36
4.1.6.9 read_rev_file_mod.fO0........cooiiiiii 37
4.1.6.10  create_geobins_ Mod.fO0 ..........ccviiiiiiiice e 37
41.6.11 read_filenames_mMOod.fO0.........coi i 37
4.1.6.12 read_geobins_MOd.FO0.........ccceiiiiiiiee e 37
4.1.6.13  read _binrev_mod.fO0.........coiiiiiiiiiie 37
4.1.6.14  sort_file_ mod.fO0.........ccoviiiii i 37
4.1.6.15  read _unique_MOA.TO0 ........coiiiiiiieiiee e 37
4.1.6.16  filter_req_mod.fO0 ........cceiieii e 37
4.1.6.17  find_uix_delta_ mod.fO0.........cooiiiiiiieee 38
4.1.6.18  reWrite_req.fO0 .. ..o 39
417 WIIEE_Pr_CLLECK. .ot 40
4.1.8 WIItE_PC_CLILEICK ..eeiieeece et nne e 40
4.1.9  PArSE_IEOA.FO0 ... it nae e 40
4.1.9.1  read_pr_Ctrl_mod.fO0........coiiieii e 41
4.1.9.2  read _req_mMO0.TO0 ..o e 41
4.1.9.3  write_req_ MOA.FI0........ccieiiiieiiee e 41
4.1.10  Prod_Create.fO0 ......cceiei et 41
4.1.10.1 prod_common_mMOod.fO0.........cooiiiiiiee e 42
4.1.10.2 prod_reader_mod.fO0.........coiiiiiie e 43
4.1.10.3  prod_writer_mod.fO0 .......ccoiiiiece s 43
4.1.10.4  read _pc_Ctrl_mOd.fO0 ..o 43
4.1.10.5  read prod_recs_ mod.fO0 .......ccoviiiiiiiice e 43
4.1.11  Prepare_DrOWSE.ICH ... ..o e 43
41111 gAPG-FI0 oo 43
41.11.2 RUNDIOWSE.KSN ..o s 44
4.1.11.2.1  QaBIOWSE.PIO .eoviiiiieiieiieieie sttt sttt bbbt 44
4.1.12  create_pass_FHES.ICH .......cuoiiiee 44
4.1.13  MKPASS.TA0 ...t te e e nne e 44
41.13.1 read_pass_control_mod.fO0 ... 47
4.1.13.2 read_glas_record_mod.fO0...........cceiiiiiiiiiie e 47
4.1.13.3  SOMti_MOA.FO0 ..o 47
4.1.13.4  find_pass_MOA.FI0........ccceiurireiiiieieee e 47
4.1.14  create_unique_TIHES.ICH ......cui i 47
4.1.15 mKunique_IiNdeX.fO0 .......ccoeiiiiieiice s 47
41.15.1 read_glas_unique_control_mod.f90..........ccceriiiiiiiiie e 49
4.1.16  create DINFEV.ECK ..o e 49
4107 MKDINIEV.TO0D ...t 49
4.1.17.1 read_binrev_control_mod.fO0..........c..ccoviiiiiie i 51
4.1.18  Create _geO.ICH ..o e 51
I e T 1110 T T O PSS 51
41.19.1 read_geo_control_mod.fO0..........ccriiiiiie 53
4.1.20  parameters_for _PAr.tCl.......cooeiieiice e 53
4.1.21  INVOKE_PEILKSN ....eieiiii et 53
4.1.22  COMPAIE_LISES.IC ...ocuviiie et nne e 53

Last updated: 5/8/2012 Page xxviii Version 201205.0



5

6

7

4.1.23  15€arCh_all_TOX.ECH ..o 54

4.1.24  send_mail_MSCE.Pl ..o 55
4.1.25  send_mail_CCD.PI ..o 55
4.1.26  read_header Val.fO0.........cccccoiiiiii i e 55
4.1.26.1  get_header_val_mod.fO0.........ccoiiiiiiii 56
PrOCESSING DAL, . ..ueeieeeiiitiesie ettt et e e e e e s e s teesaeaseesteentesseesreeneenneas 57
5.1 INVOCALION ...ttt ettt ettt b e bt e e st et e e beeneesbeebeeneenreas 57
5.2 EnvIironment DefiNITIONS........ccocoiiiiiiiiiieiciese st 57
5.3  Main script to process data: process_data.tCl..........ccooeieriiiiiiniieiese e 57
5.3.1  create DINMEV.ECH.....cooviiii e e 58
5.3.2  Create_gEO0.ICH .. .o e 59
5.3.3  create_pass_FIHES.ICH ........oiviiicc s 60
5.3.4 create_unique_TIlES.ICH .....cceoiii e 61
5.3.5  FINA _IrACK.ECH .. .oi e re e 61
5.3.6  1€ad_TN_THE.ECK ... e 62
2.3.5.17  read_KeYWOrd.ICl........coooe it e 62
5.3.7 modify_processed _traCkS.tCl.........cooiiiiiiiiiie e e 63
5.3.8  SCP_IeV_TIlE.KSN ..o s 64
5.3.9  CheCK eV _tIME.ICH.......ooiiiiei e et 64
2.3.5.18  get_data direCtOry.tCl........cccoveiiiiece e 65
5.3.10  CRECK_PIA.ICH ... et 66
5.3. 11 tIME _SOMECH .oeivieiiecciie e re e 66
5.3.12  update_prod_rel_fIe.tCl ... 67
FUITIIING SUDSCIIPLIONS. .....eiiiiee e ennes 69
6.1 INVOCALION ...ttt e bttt s e st e e te st e sbeenbeeneenreas 69
6.2  EnvIironment DefiNitiONS.........cccoiiiiiiiiiiecese e 69
6.3  Main script to process subscriptions: process_Subs.tCl.........cccocoiiiiiiniiniin i 69
TR 00 o (7= (= o Lo [ ! PSR 70
6.3.2  1SEArCh_AllCH ..o s 71
OIS G T 110 o S o[ o3t (o ISP 71
6.3.3.1. WIItE_AS_CEILICK oo e 72
6.3.3.2. WIILE_Pr_CUILICL....oceeiiecece e 73
6.3.3.3. WIIE_PS_CLILICK .o e 74
6.3.4  SUD _EITOIECH .. re e re e 74
6.3.5  CheCk _FUll_PIOLICL. ..o s 75
ENEIGY ANAIYSIS ..evviitieiecie ettt e et et te et e ra e reeneennes 76
7.1 INVOCALION ...ttt e bttt s e st e e te st e sbeenbeeneenreas 76
7.2 Environment DefiNITIONS.........cooiiiiiiiieiece e 76
7.3 Main script to run energy analysis: process_ea.tCl .........cocovvriiiiiiiniiine e, 76
7.3. 1 WIItE €8 CLILEIC ...eeiiiieice e e 77
7310, TUN_CAKSN o e e 77

0 50 Yo o] [0 530 o (o PSS 78
7.3.1.1.2.  energy_analySiS2NIMIPrO .......cccoiiiiieiiie e e 79
7.3.1.1.3.  WF_analySiS2ZNtMLPro.......cccooveii e 79
7.3.1.2. PS_TO_PNG.KSN oo e e 79
7.3.1.3. SCP_file WED.KSN...c.ooieeeee e 80

Last updated: 5/8/2012 Page XXix Version 201205.0



8 Data DIStrIDULION. ..o 81

8.1  parameters_fOr PAr.LCl.......cooiie e s 82
8.2 INVOKE _PEILKSI ..o 83
ST B o (7= (= oo [ o S 83

9  Submitting Product QA Updates to the I-SIPS..........co e 85
9.1 LAY ToF: £ o] o USRNSSR 85
9.2 INPUL ATQUIMENTS ...ttt e e e b 85
9.3  ENVIironment DefiNItiONS. .......c.coeiiiieeiccieseee s 85
0.4 SUDMIT_QAICH ... et e 85
0.4.1 create_gaUT.ICL.......covee e e 86

O Y/ o o (o] 1 T ISP PRRTRRTR 87
O R vt o 1= o3 Qo 1] 4 (od OSSPSR OPRRPR 87
10.2  CRECK _PS.ECH.ccniiie ettt nneas 87
10.3  ChECK _PS_ISCEECK...uieiiiieiie e e e e nnees 88
10.4.1  SSNL_FSCEIS.ICH ...t et 88
10.4.2  mv_Saved fIlES.ACl ... 89

I T 1 O =T ST U P R TRPRTRRTR 90
11.1  check_pending SUDS.ICH .........ccccuiiieiiee e nneas 90
11.2  check _Pending_a.tCl..........ooiiiiiieiiie e 90
11.3 e _QAPICH e nneas 91
11.2.1  CheCK_1aSEr_OP.ICL. ... 91
11.2.2  get_file _tIMES.ECL.....cceeiiee e 92
114 CheCK _SUDS_BA.CL.....cc.iiiieiiiee e 92
I O 1< o o OSSPSR 94
12,1 daily_CIEANUP.ECT ..o 94
12.1.2  get_file_J2000.ECH .....cueieeeeieceee e 94
12.1.3  get_pid_J2000.LCH ....cceiiiieiiiieseeiee e 95
12.1.4  cheCk _INSt_UPAALE.IC]......ccueiieieeie e 96

13 INSTIUMENT UPGALES ..ottt sttt et e b e beeneesbeesbeeneenreas 97
13.1  Invocation and ENVIFONMENT .......cueiieiieiiereeie s e ee st e e ae et e e sraesteeeesraenneaneenneas 97
13.2  EnVIironment DefiNItIONS.........coouiiiiiiie e 97
13.3  parse_istat MAILIC] .......cccooviiieecece e 97
14 1-SIPS Distribution MONITOIING .....oouveiieiiie e 99
14.1  Invocation and ENVIFONMENT .......cueiieieiierieeie e e ee e se e e ste e sraesre e e sraesseaneenneas 99
14.2  Environment DefiNItIONS.........cooiiiiiiie et 99
14.3  parse_stat MAILICH ........cooiiiiiece e 99
15 Daily StatiStICS REPOIT .....cueiitieiiiiiesieeie ettt bttt sre e enes 101
15.1  Invocation and ENVIFONMENT .......cueiieiieie et se e e et ae e sreeaeaneesneens 101
15.2  Environment DefINItIONS.........cooiiiiiiiic ettt 101
15.3 Sl FEPOIT.ACK. ..o 101
15.3.1  send_mail_rePort.pl .....c.ooieie e 101
Appendix A - Mysgl Database TabIES.........cccveveiieiiiieiiere e 103
AL Table NamMeE: USER ...ttt bttt 105
A.2 Table Name: SPECIAL_REQUEST _USER ......ccccooiiiiiiiiiiiiiceeee e 105
A.3 Table Name: SUBSCRIPTION_USER .......cccoiiiiiiiiiicieieieie e 106
A.4 Table Name: ISIPS_PRODUCT _ID.......ccoiiiiiiiiiiiie s 107

Last updated: 5/8/2012 Page XXX Version 201205.0



A.5 Table Name: REQUEST_PRODUCT _SEG........ccccoiiiiiiiiieieieieie e 108

A.6 Table Name: REQUEST _TRACKS ...ttt 109
A.7 Table Name: REQUEST _CYCLES........coooiiiiiece sttt 109
A.8 Table Name: ISIPS_SUBSCRIPTIONS .........coooiiiiiiiesirinieee e 110
A9 Table Name: CREATION . .....oii ettt e sre e 110
A.10 Table Name: SUBSCRIPTION_INPUT _FILESL.......cccccoviiiiiiiiiienc e 111
A.11 Table Name: SUBSCRIPTION_INPUT _FILES2......cccccooeiiiiiiniiess e 112
A.12 Table Name: DISTRIBUTION ......cccoiiiiiiiiiiiiene e 112
A.13 Table Name: DISTRIBUTION_FILES ........cccooiiiiiiiiieieieeee e 113
A.14 Table Name: [rSCF]_PRODUCT _ID.....ccccouiiiiiiiiieiisisieieie e 113
A.15 Table Name: SPECIAL_REQUEST PID .....ccccviiiiiiiiiiiieieresie e 114
A.16 Table Name: QA _PRODUCT _UPDATE.......cociiiiireiireneeie e 114
A.17 Table Name: TOO_UPDATE ......oco oottt 115
A.18 Table Name: INSTRUMENT _UPDATE .....cccooiiiiiieiirereeie e 116
A.19 Table Name: RTSCM _UPDATE........coiiieieit ettt 116
A.20 Table Name: RTSCM_POINTING .....cccoeiiiiiiiiiiie s 117
A.21 Table Name: SUBSCRIPTION_PRODUCT _SEG ......ccccoviiiriirienie e 118
A.22 Table Name: SUBSCRIPTION _TRACKS........cooi it 118
A.23 Table Name: SUBSCRIPTION _CYCLES ........ccccooiiiiiiieieierene e 119
A.24 Table Name: REQUEST INPUT_FILES ..ot 119
APPENTIX B = FIOWCNAIS ...t 121
B.1 Flowchart for data_Select.fO0........c.coiiiieiceece e 121
B.2 Flowchart for prod_Create.fO0..........coiiiiiieiee e e 123
B.3 Flowchart for process_data.tCl ............cceviiiiiiiii e 124
B.4 Flowchart for process_€a.ICl .......c.oiiiiiiiiie e 127
B.5 Flowchart for process_SUDS.ECI..........oiveiiiiiiiecece e e 128
B.6 Flowchart for data_select_req.tCl ... 132
APPENTIX C — File TOMMALS.....c.viiieiiee et saeeneenneas 133
C.l  REQFIE FOIMAL. ...ttt saa e e e 133

Last updated: 5/8/2012 Page XXXIi Version 201205.0



1 Introduction

The only way the rSCFs receive GLAS levels 1 and 2 data is by requesting it from the mSCF.
All data is distributed in GLAS standard data product format as described in the respective
User’s guides. Subsetting is done by time and/or geographic area but not at the parameter level.

There are three types of requests; subscriptions, special requests, and quick look requests.

Subscriptions are to be submitted to the mSCF for standing orders. Subscriptions will be
automatically executed every time the mSCF receives a new product set from the I-SIPS. In
normal mode, each time a subscription is executed one product set will be created.

A special request is a one-time request. Special requests will be executed on all product sets that
exist at the time the request is received. One product set will be output with all the data unless
any one file size is greater than 2 Gbytes, in that case multiple product sets will be created,
breaking them by time.

A quick look request will be similar to a data request, except that it will request special
processing at the ISIPS if the data has not yet been processed

Processing a data request consists of 3 steps:

Step 1

The rSCF user submits a special request or subscription using the data request graphical user
interface that sends the request parameters in an email to user scf on icesat0. — This part is the
responsibility of the scientist.

Step 2
A script automatically runs on each emailed request that parses the data request parameters from
the email and populates the mysql data request tables with those parameters.

Step 3
For special requests, a script is executed right after populating the data request tables to fill the
request.

For subscriptions, a cron job looks for new product sets and starts the subscription script when a

new product set arrives to the mSCF ingest directory. (Steps 2 and 3 are the responsibility of the
mSCF.)

Last updated: 5/8/2012 Page 1 Version 201205.0



Figure 1.1 shows the overall design of this system, and location of where the different modules
are run. Basically the software consists of 5 main packages:

The Data Request GUI

The scripts to parse the email from the GUI and populate the data request data base
The scripts and other software to create the products requested

Scripts to update the data request data base

Distribution scripts to distribute the data to the rSCF

Data Request
| GUI

Output:
Parameters file
mailed to mSCF

_/_
email mSCF -

mowmn-=

Parse email
Fill data requestdatabase
tables
! T
| Run subscriptions
siw
m
S
c F
F Run special request
siw
v
Update data request
tables

Distribute data to
scientists

Data placed in product set
directory

v

Run visualizer /Analysis
programs

>

mown-

Fig 1-1 Overall Design

Last updated: 5/8/2012 Page 2 Version 201205.0



2 Data Request GUI

The data request GUI allows the user to select ICESat products by region, time, and/or set of
tracks. The most restrictive information will be used - for example, if the user selects a time span
and a set of tracks, he or she will receive only the subset of the tracks that are within the time
span. There are two types of data requests: by subscription and by special request. The first
window that pops up has two buttons for each of the data request types. After the user selects the
type he wants, that window disappears and from that point the GUI is specific to the data request
selected. The new user interface has two windows. The first is to define selection criteria and
submit requests; the second is a help window in which the user can see a (DEM) of his/her
selected region and the 8 or 91 day GLAS coverage within it. If the user submits a special
request, he/she is only shown the GLAS tracks that have been processed that meet that request.
If the user submits a subscription, he/she will see the GLAS coverage from the full 8-day and/or
91 day set of tracks. Note that most of this software is also used by the “front-end” of the data
visualization software to select the geographical and temporal spans of data to visualize.
Routines just used by the visualization software will be denoted as such.

2.1 Invocation

Run /SCF/bin/ops/run_data_request.ksh. This script defines all of the environment variables
needed to run the data request GUI and creates the working directory.

2.2 Environment Definitions

export SHLIB_PATH= [location of the shared libraries]

export ICESatVIS_MAIN= [location of the data request GUI]

export ICESatVIS_TMP= [location of the temporary directory]

export ICESatVIS_HELP= [location of the help files for the data request GUI]

export ICESatVIS_PARAMETERS= [location of files in which are saved selected parameters
from the data request GUI

export ICESatVIS_ANC= [location of the ancillary data ]

export ICESatVIS_REFORBIT= [location of the reference orbit data]

export ICESatVIS_DATA= [location of the map data]

export ICESatVIS_DEM-= [location of the DEM data]

export ICESatVIS_BIN= [location of the executable and script files]

export ICESatVIS_OUT= [the directory to put the requested product set]

export TMP_DIR= [../..]dir_$$ [the working directory-has a unique name and will be deleted
when the processing is finished. $$ is the process ID]

mkdir dir_$$

cp SICESATVIS_ANC/data/processed_8_pass.txt STMP_DIR/. [copy the file with the list of all
the processed tracks to the temporary directory]

cp SICESATVIS_ANC/data/processed 91 pass.txt STMP_DIR/.

export TRACK_FILE8=t8p.reforb

export NO_TRACKS8=119

Last updated: 5/8/2012 Page 3 Version 201205.0



export TRACK_FILE91=t91p.reforb

export NO_TRACK91=2723

# Rewrite processed_x_pass.txt to get rid of duplicated tracks
$ICESATVIS_BIN/rewrite_processed_tracks.tcl $TMP_DIR/processed 8 pass.txt
$ICESATVIS_BIN/rewrite_processed_tracks.tcl $TMP_DIR/processed_91_pass.txt
idl SICESATVIS_BIN/run_data_request

Last updated: 5/8/2012 Page 4 Version 201205.0



2.3 List and Descriptions of the IDL Routines used by the Data Request GUI

append.pro
Appends an element to an array

browser.pro
Displays list of available browse products. Visualizer only.

browser_data_gui.pro

Creates the main window for the Data Visualization GUI. It allows the user to select ICESat
products by region, time and/or set of tracks. It consists of two main windows; a submittal
window and a help window. The submittal window is used to define selection criteria and submit
requests. The help window shows the user a map or DEM of his/her selected region and the 8 or
91 day GLAS coverage within it. The user is also able to load the tracks selected in the help
window to the submittal window. The difference between the subscription GUI and the special
request GUI is in the time span selection. In the subscription GUI, the user selects the begin and
end of year, month, day and hour.

browser_visualizer.pro
Displays a window to select visualizer display, browse products display, or subsetting.
Visualizer only.

check_file_exist.pro
Checks that input file exists

choosemap.pro

This program plots the map and/or DEM over the world, Antarctica, and Greenland. It allows the
user to select a region by entering values in the longitude and latitude text field or by zooming
the map using the mouse. The user can plot the GLAS ground tracks over the selected region.
The region lat/lon values and the tracks are transferred back to the main window.

cmps_form.pro
Creates a form to configure a postscript file

continueevent.pro
Summarizes and checks visualizer request once “continue” button is pressed

convert_time.pro
Converts date to J2000 secs

create_save_file.pro
Saves all the current selected special request parameters into a file designated by the user.

create_save file_ds.pro
Saves all the current selected subscription parameters into a file designated by the user.

Last updated: 5/8/2012 Page 5 Version 201205.0



data_request_gui.pro
Allows the user to select between special request or subscription request.

display_browser_2_mscf.pro
Displays more browse products on the mSCF. Visualizer only.

display_browser_2_rscf.pro
Displays more browse products on the rSCFs. Visualizer only.

display_browser_mscf.pro
Displays browse products on the mSCF. Visualizer only.

display_browser_rscf.pro
Displays browse products on the rSCFs. Visualizer only.

display_select.pro
Creates a window to display selected parameters

drawdem.pro

Displays a Digital Elevation Model. It calculates the size of the region to be displayed and
selects the proper data file with the proper resolution to use so the DEM read won’t contain more
values than the number of pixels that can fit in the window.

drawmap.pro
Displays a map within the longitude and latitude region that the user selected.

find_ref_orbit.pro
Finds the reference orbit in the start_date-end_date time span.

get_cycle.pro
Gets a cycle number from a selected cycles string

getcolor.pro
Defines color names and values

getlatlon.pro
Gets latitude and longitude values from a text widget

getnow.pro
Gets the current day and time

gettrackarray.pro
Runs the executable orbselect to get a list of the tracks in the selected region.
If the selected area is the whole world, the code skip executing orbselect.

highres_to_plot.pro

Last updated: 5/8/2012 Page 6 Version 201205.0



Given the size of the selected region, it selects the DEM file that has the right resolution to
display the DEM without overwriting the pixels.

icesatvis_ds.pro
Creates the first window for the visualizer.

infoevent.pro
Handles the events of the special request and subscription windows.

loadpardsevent.pro
Loads previously saved visualizer parameters

loadparevent.pro
Loads previously saved data request parameters

maindsevent.pro
Handles the events of the main window for the Data Visualization GUI

mainevent.pro
Handles the events of the main window for the Data Request GUI

mapinfoevent.pro
Handles the events of the map window

mapsetdefaults.pro
Sets map defaults

mkunique_index.pro
Creates the unique index file for the GLA product

plotcolortrack.pro
Highlights a given track.

plotevents.pro
Handles the events that relate to plotting the tracks

plotlatlon.pro
Plots the map

plottrack.pro
Reads the track list and indices of tracks that cover a selected region from the output of orbselect.
Reads the track files: t8p.reforb, t91p.reforb and displays the tracks in the list.

processed_products.pro

Determines which GLA products are available in the data directory and creates a
processed_products.txt file listing them. Used by the visualizer only.

Last updated: 5/8/2012 Page 7 Version 201205.0



product_select_dr.pro
Displays the products window and handles the window events for the Data Request GUI

product_select_vis.pro
Displays the products window and handles the window events for the Data Visualization GUI

putlatlon.pro
Puts the lat/lon values in their text field

puttracks.pro
Loads the selected tracks from the map window to the main window

region_mask.pro
Displays region masks

request_gui.pro

Creates the main window for the Data Request GUI. It allows the user to select ICESat products
by region, time and/or set of tracks. It consists of two main windows; a submittal window and a
help window. The submittal window is used to define selection criteria and submit requests. The
help window shows the user a map or DEM of his/her selected region and the 8 or 91 day GLAS
coverage within it. The user is also able to load the tracks selected in the help window to the
submittal window.

resetcolor.pro
Resets the color of the selected track

savepardsevent.pro
Saves visualizer parameters

saveparevent.pro
Saves data request parameters

selectalltracks.pro
Selects all tracks for that reference ID on the map

set_env_pc.pro
Sets environmental variables for IDL Project for visualizer use on PC.

setdefaults.pro
Puts default values in the GUI

sort_tracks.pro
Sorts a list of tracks

submit_select.pro

Last updated: 5/8/2012 Page 8 Version 201205.0



Writes a list of the submitted parameters to a file. Each parameter is written in a new line with a
keyword prime to the value. For example: PRODUCT=GLAO05.When all the parameters are
listed, it calls a mail_request script that mails the file to scf@icesat0.gsfc.nasa.gov.

submitevent.pro

Submits the data request. If there is not enough information to submit, an error message will be
displayed that prompts the user for the missing information.

Another error message will be displayed if the selected cycle is not in the time span.

Only when all required information is selected will the request be submitted.

summarizeevent.pro
Summarizes the user’s selection input.

swdelete.pro
Deletes a scroll window

swindow.pro
Creates a scroll window

tvimage.pro
Displays an image

Create_subset.tcl
Creates subsetted products.. Runs as part of the visualizer.

Arguments:

Input argument 1 temporary directory name.
Input argument 2 output directory name.

Input argument 3 is file name specified by user.

Error Handling:
- None

Description of Algorithm:

- Runs data_select and prod_create to create subsetted products

- Creates BN, GR, UR and PS files for subsetted products

- Moves subsetted products from temporary directory to output directory and renames files to
user-specified file names

Calling Routines:

— browser_visualizer.pro
— browser.pro

Last updated: 5/8/2012 Page 9 Version 201205.0


mailto:scf@icesat0.gsfc.nasa.gov�

Fortran Routines used by the Data Request GUI

2.3.1 orbselect.f90

The software determines the tracks and portions thereof of a reference orbit that traverse a
specific geographic region. The data request interface uses orbselect to show projected GLAS
coverage on a map in the help window. Given a geographic region defined by a rectangle in
latitude and longitude, orbselect outputs a list of GLAS tracks that go through that rectangle and
the indices within those tracks. A separate list is obtained for each reference orbit (i.e. 8-day and
91-day).

where

- Reference orbit — an orbit which is maintained to within 1 km cross-track on the ground

- Track — one orbit revolution within a reference orbit, starting and ending at the ascending
node

- Track Index — index within the track latitude and longitude arrays that define a unique
ground location — currently these are defined for each second along the track

The Reference orbit ground track file is defined from the reference orbit ephemeredes distributed
by UTCSR. It is interpolated to 1 sec intervals along the track and stored as a direct access
binary file where each record has arrays giving the latitude and longitude coordinates for one
track in the format defined in the SCF Architectural Design Document.

2 Bin and georeference tables as described in the SCF Architectural Design Document are
created for the two reference orbit ground track files similar to the bin and georeference
tables that are created for each data product set of data. Rather than listing the beginning
and ending unique record numbers that traverse each bin, the track number and beginning
and ending 1 sec indices within the track are listed in the bin table.

Given a geographic region defined as rectangle in latitude and longitude, first the geographic
bins contained in that region are calculated analytically using the georeference bin configuration
presented in the SCF Architectural Design Document. The georeference and bin tables are
accessed to determine what tracks (and portions thereof) traverse the bins selected.

Now we know what tracks go through the enlarged geographic region and which portions of
each of them. This only gives this information to the precision of the geographic bin
configuration. To get rid of the false positives, the latitude and longitudes are read from the
reference orbit ground track files for the tracks and indices selected and checked against the
selected region to output a refined list of tracks and indices. The output is then sorted primarily
by track number and secondarily by index within the track.

Input parameters:
Begin latitude, begin longitude, end latitude, end longitude

Input files:
orbselect.inp

Last updated: 5/8/2012 Page 10 Version 201205.0



contains: reference orbit file name, bin directory name, georeference directory name.

Output files:
orbselect.out

contains: track #, begin index, ending index (all integers)

Error Handling:

Calls GLAS _error for the following conditions:
- error in listing the arguments

- error opening file

- error reading file

Returns an exit(3) to the main script.

Description of Algorithm:

- Open the input file to read the name of the georeference file and the bin file

- Call subroutine orbselect_main to create a file that contains all the tracks and their indices
that are in the selected area

- Call atcl script to sort the above file by track (primarily) and index (secondarily) and write
the sorted file into orbselect.sort

- Read orbselect.sort which has several contiguous records per track and rewrite a file that
groups them into record spans

- Read the tracks file for the above records span and check if the longitude and the latitude of
the track are within the selected area. Write into the output file the records that are within the
selected area.

- Check if the above records span consists of one record number. If so, add the consecutive
record, so later the track can be displayed.

Subroutines called:

[SCF/src/orbselect_dir/VV2_prelim /orbselect_mod.f90 consists of :
- orbselect_main
- georef

- binrev
- sort_file.tcl

2.3.1.1  orbselect_main
Calls the subroutine to calculate the part of the tracks that cross the selected area

Input parameters:
i_geo, i_bin, slat, nlat, wlon, elon

where:

Last updated: 5/8/2012 Page 11 Version 201205.0



- slat, nlat, wlon, elon are the coordinates of the selected region.
- i_srt, i_geo, i_bin are the unit file numbers of the output file (orbselect.sort), the georeference
file, and the binrev file.

Error Handling:
None

Description of Algorithm:

- Call getbins to get all the bin numbers in the selected area

- Call georef to get the record in the binrev file that corresponds to the bins
- Call binrev to get the records in the tracks file that to through the bin

2.3.1.2  georef

Reads the georeference table to finds the records in binrev file for the input bin number

Input parameters:
I_geo,ibin,irecl,irec2,Inobin,first

where:

- i_geo is the georeference file unit

- ibin is the bin number

- irecl, irec2 are the beginning and ending records in the binrev file for bin ibin

- Inobin - logical indicating no bin number found in georeference file equal to ibin ??
- first indicates that it is the first time that the subroutine is called

Error Handling:
None

Description of Algorithm:
the first call to this routine:

- reads the georeference file until finds the first data record, the first two characters are
“GD”.when the beginning of the record contains the string "GD", check if the bin number
is equal to ibin. If it is equal then return, passing back irecl and irec2 read from that
record, if the bin number on the georeference file is greater than ibin, then return with
Inobin set equal to true?

each succeeding call

- check if the bin retrieved from the georeference file is greater than or equal to ibin and if
so, then return.

- if the bin retrieved from the georeference file is less than ibin, keep reading the file until
it is greater than or equal to ibin If find a bin equal to ibin then return with the
corresponding irecl and irec2, if do not find a bin equal to ibin then return with Inobin set
to true.

Last updated: 5/8/2012 Page 12 Version 201205.0



2.3.1.3  Dbinrev
Find records in the track file of the tracks that cross through the input bin

Input parameters:
i_bin,i_srt,irecl,irec2

where:

- i_binis the bin number

- i_srtis the output file unit for orbselect.sort

- irecl, irec2 are the beginning and ending records in the binrev file

Error Handling:
Calls GLAS_error for the following conditions:
- error reading a file

Description of Algorithm:

- Read the binrev file from irecl to irec2, each record contains the geographic bins #, track #,
beginning index of track within the bin, and ending index of the track within the bin.

- Write to output file orbselect.sort the track # and the beginning and ending indices within that
track

Subroutines called:

[SCF/src/common/V2_prelim/fbins_mod.f90 consists of:
- create_bin_config
- getbins
- getlbin

2.3.1.4  create_bin_config

Creates the bin configuration. It defines the bin size, the number of grids in longitude and
latitude and the beginning and ending values of the latitude and longitude. Those values are hard
coded in the file.

Input parameters:

Igren,selat,wnlat,wnlon,selon,londiv,latdiv, bin_size lon,bin_size_lat

where:

- lgren is the crossing Greenwich flag. It is true when geographic bin configuration crosses the
Greenwich

- selat and wnlon are the southeastlatitude and northwest longitude boundaries of the
geographic bin configuration.Bin 1 starts at selat and wnlon.

- wnlat and selon are northwest latitude and southeast longitude boundaries of the geographic
bin configuration. The last bin ends here.

- londiv,latdiv are the number of bins in the longitude and the latitude direction respectively

Last updated: 5/8/2012 Page 13 Version 201205.0



- bin_size_lon,bin_size_lat are the sizes of the bin in the longitude and the latitude direction
respectively

Error Handling:
None

Description of Algorithm:
- Determine the bin configuration

2.3.1.5  getbins
get all the bins in a rectangular area.

Input parameters:
gselat_t,gnwlon_t,gnwlat_t,gselon _t,
output parameters:
nbins,nobin,i_err_sev

where:

- nbins is the array giving the geographic bins in the given region

- nobin is the number of bins in the array nbins

- gselat_t,gnwlon_t,gnwlat_t,gselon_t are the geographic coordinates defining the region for
which to find the bins

- i_err_sev is the error severity code

Error Handling:

Calls GLAS_error for the following conditions:
- Number of georeference bins exceeds maximum.
- No bin was found.

Description of Algorithm:

- call create_bin_config to get the bin configuration

- check that region limits are within the geographic bin configuration limits
- determine bin group within which region starts

- check if Greenwich splits the region

- region split....divide into two pieces

- loop over the area(s) contained by the region

- locate the starting bin number

- locate all bins within lat group which are contained in region

- proceed to next bin group and determine if outside region

2.3.1.6  getlbin

get the bin number of specific lon and lat.
Assumption: In the bin configuration the Greenwich crossing flag is false.

Last updated: 5/8/2012 Page 14 Version 201205.0



Input parameters:
ibin,lat_t,lon_t,i_err_sev

where:

- ibin is the bin number

- lat_tand lon_t are the latitude and longitude of the spot to find the bin
- i_err_sev is the error severity code

Error Handling:

Calls GLAS_error for the following conditions:

- Value of the bin greater than gi_max_geobins

- Greenwich crossing flag is true why is this an error?

Description of Algorithm:
- call create_bin_config to get the bin configuration
- calculate the bin number value only if the Greenwich crossing flag is false .

2.3.2 select_processed_tracks.fo0

Read the tracks list from the orbselect output and rewrite the output file only with the tracks that
were processed.
When the selected area is the whole world, the output is all the tracks that were processed.

Input_parameters:

orbselect_out_file, processed_tracks file, dir
where:

dir is the directory where the files are

Error Handling:
-iostat

Description of Algorithm:

-Open the processed_tracks_file to read the list of processed tracks

-Read the tracks list from orbselect_out_file

-Copy to the output file (with the extension .process) the orbselect_out_file leaving only the
tracks that are in processed_tracks_file.

2.3.3 select_time_tracks.f90

Reads the tracks list from the orbselect output and copies the orbselect output file to the output
file only with the tracks that are in the time span. (Takes into account only the tracks but not the
cycles. For example:

if there is a track 30, cycle 2 in the time span but only track 30 cycle 1 was processed , it will still
put track 30 on the list

Last updated: 5/8/2012 Page 15 Version 201205.0



input parameters:

orbselect_out_file, tracks_list_file, dir

where:

tracks_list_file is the file with a list of tracks in the time span.
dir is the directory where the files are.

Error Handling:
-lostat

Description of Algorithm:

-Open the input file to read the list of tracks

-Read the tracks list from orbselect_out_file.

-Copy the orbselect_out_file to the output file (extension .time_process) only with the tracks that
show also in track_list_file.

2.3.4 time_tracks.f90
Find the tracks in a time span.

Input parameters:

Begin_time, end_time, out_dir, rev_file, file8, file91,file3,err_file

Where:

Begin_time, end_time is the time span (J2000 format)

File8, file91, file3 are text output file with a list of tracks from the 8 days , 91 days or transfer
orbit.

Error Handling:

Calls Glas_error for the following conditions:
- error opening file

- error reading file

Description of Algorithm:
- Call read_rev_file to reads rev file and find the passiD's filtered by time span.

Calling Subroutines:
read_rev_file_mod.fo0

2.3.5 sort_file.tcl
Sorts input file into sorted output file.
Arguments:
Input argument 1 is input file name with full path.

Input argument 2 is output file name with full path.

Error Handling:

Last updated: 5/8/2012 Page 16 Version 201205.0



Sets errNum =1 for the following conditions:
- error opening files to read/write

Description of Algorithm:
- Uses TCL Isort to sort input file into output file

Calling Subroutines:
orbselect.f90

Last updated: 5/8/2012 Page 17

Version 201205.0



3 Parsing the Email and Populating the Mysql Data Request Tables

The information from the subscription or the special request submitted using the Data Request
Interface is sent by email to the scf account. Every new email that arrives will trigger the
execution of the readMail.ksh script that will parse and retrieve the data request parameters and
insert them to the mysql database tables.

The readMail.ksh script is triggered every time a new mail is received in the scf account because
the full path name of the script is in the /etc/mail/forwards/scf.forward file.

Input:
New mail
consistof data
request parametes

readMail.ksh:

Define the environment
variables

}

Call parse_mail.tcl

Parse_mail:
Parse the mail
into its
parameter
values

Output:
mail_parameters.txt

Populate_db:
Populate data
base tables

Call populate_db.tcl

Output:
Log file

Call data_select.tcl

Fig 3-1

Last updated: 5/8/2012 Page 18 Version 201205.0



3.1 Invocation and environment

The readMail.ksh script automatically executes whenever a new email is received in the scf
account. This script defines all the environment variables needed to process the email and
executes the parse mail script and the populate db script.

Environment Definitions:
export PATH="cat /etc/PATH :3PATH [Include the /etc/ directory to the path]

export ICESATVIS_TMP= [temporary directory]

export SHLIB_PATH= [location of the shared libraries]

export ICESAT_PRODUCT _SET= [location of data products — data are in L*
subdirectories]

export ICESATVIS_BIN= [location of the executable program and scripts]

export ICESATVIS_ANC= [location of the ancillary data]

export ANCO7_FILE1=[location of ancO7_001_01_0000.dat file for qapg]
export ANCO7_FILE2=[location of ancO7_001_01_0003.dat file for qapg]
export ANCO7_FILE3=[location of ancO7_001_01_0004.dat file for qapg]
export ANCO7_FILE4=[location of ancO7_001 01 0006.dat file for gapg]

export REV_FILE= [rev file path and name]

export SCF_ERROR_FILE=/SCF/ancillary_data/scf70_000_00_00.dat

export REQ_HEADER_SIZE= [the size of the req file with headers and no data]
export TMP_DIR=$ICESATVIS_TMP/dir_3$$ [the working directory]

export PID_NUMBER=$$ [the process ID number]

mkdir $TMP_DIR [creates the working directory]

export DIST_DIR= [distribution directory]

export LOG_DIRECTORY= [logfile directory]

export SRC_DIR= [the source directory of the perl scripts]

export LOCAL_NAME= [mscf or rscf]

export LOCAL_HOST= [host name]

export DB_NAME= [mysql database name]

export DB_USER= [mysql database user name]

export ISIPS_DIST= [SCF distribution cache for I-SIPS]

export SPECIAL_REQUEST _PATH= [/SCF/product_sets special requests directory path]

#Read read-only file for database password
export DB_PASSWD= [mysql database password]

Last updated: 5/8/2012 Page 19 Version 201205.0



3.2 Parse Mail scripts parse_mail.tcl

This script parses the mail and writes the parameters into a file.
Calls ga_mail.tcl if the mail came from a ga_form .

Input parameters:
tmp_dir — temporary directory for mail processing
input_par_file — the name of the file where the mail parameters will be written

output files:

from_mail_file — text file that has all the data request parameters.

The file consist of:

request_flag: 1 for special request, 2 for subscription

user_name: the user name of the person that sent the data request email.
institution_name: The name of the institution where the email was sent from.
n_of_products: number of products to process

product_name

t1,t2: start and end time to process the data

lat1,lat2,lonl,lon2: the area to process

n_of_cycles: number of cycles to process

cycle_number

cycle_type: 1 for 8 days repeat, 2 for 91 days repeat

n_of_tracks: number of tracks to process

track_number

track_type: 1 for 8 days repeat, 2 for 91 days repeat

out.txt, error.txt: output and errors list text files.

Error Handling: The script terminates when an error occurs. The error information from all the
calling routines is saved in errorinfo and will be written into the log file.

- Can’topenafile

- GLAS fatal error

Description of Script:
- Define the keywords of the data request parameters
- Retrieve the values of the data request parameters

Subroutines called:

- exist_check.tcl
write_log.tcl
update_error_table.tcl
ga_mail.tcl

3.2.1 exist_check.tcl

Last updated: 5/8/2012 Page 20 Version 201205.0



Writes the data request parameters into the from_mail_file. If there is a missing parameter, sends
an error and exits. The script also writes the selected track numbers into an orgTrack.txt file

Error Handling:
Return error number to the main script.
- Error missing parameter in a file

3.2.2 write_log.tcl
Writes the data request parameters into the information log file.

Error Handling:
- None

3.2.3 qga_mail.tcl

This script updates the QA_PRODUCT_UPDATE database table with product QA parameters
and emails CCB and SCF personnel.

Assumptions:
The database is not already open.

Input parameters:

The following QA update parameters:

- product

- release

- start date of data

- end date of data

- user

- site

- (a_update (passed, failed, inferred_passed)
- description

Global parameters:

- $db_user — Database user name

- $db_passwd — Database password for user name

- $db_name — Database name

- $bin_path — Path to bin directory where tcl code resides

- $tmp_dir — Path to temporary directory where email is processed
- $input_ga — File containing QA update parameters

- $errorinfo — error information string

Error Handling: The script terminates when an error occurs. The error information from all the
calling routines is saved in errorinfo and will be written into the log file.

Last updated: 5/8/2012 Page 21 Version 201205.0



- Can’t establish database connections

- Can’t write to or retrieve from database
- Can’t open mail message file

- Can’t send message

Subroutines called:
- send_mail_mscf.pl - Refer to section 3.1.14 for details
- send_mail_cch.pl - Refer to section 3.1.15 for details

3.3  populate_db.tcl

This script populates the data base tables.
A list and description of the database tables are in appendix A.

Input parameters:

call_cnt — counter indicating how many times routine was called
tmp_dir — temporary directory for mail processing

mail_file— the name of the file where the mail parameters are

Output files:
requestldFile.txt that consist of the requestld that was assign by the database.
output.txt, errors_out.txt are the output and the errors list text files.

Error Handling:

The script terminates when an error occurs. The error information from all the calling routines is
saved in errorinfo and will be written into the log file.

- Can’topen afile

- Sql error

Description of Script:

- Connect to the mysql database

- Retrieve the userID from the USER table where the user name and the institution name
match.
- If there is no match, a new userID is added to the table and contact the new user for the

rest of the info required in the USER table.

- If the data request is a subscription, populate the SUBSCRIPTION_USER table.

- If the data request is a special request, populate the SPECIAL_REQUEST_ USER table and
retrieve the requestlid.

- Populate the REQUEST_PRODUCT_SEG table:
The segment is determent by the selected area.
If the product is no a ¥ rev the segment is zero.
If the product is a ¥4 rev and the area include more than one segment, there will be multiple
records for the same product.

- Populate the REQUEST_TRACKS and REQUEST_CYCLES tables:

- For subscriptions:

Last updated: 5/8/2012 Page 22 Version 201205.0



If the user requested the tracks and the cycles, those values will populate the tables.

If the user didn’t select cycles then the script will populate the REQUEST _CYCLES table
with -2 to indicate use all cycles

If the user didn’t select tracks then the script will call orbselect to determine the 8-day or 91-
day tracks for the mission

Populate the REQUEST_TRACKS and REQUEST_CYCLES tables.

For special requests:

If the user requested the tracks and the cycles, those values will populate the tables.

If the user didn’t select cycles or tracks, than the script will evaluate all the tracks or cycles in
the time span:

Get from the rev file all the reference orbit Ids that cover the time span.

For each reference orbit 1d, the script will read the rev file and will get a list of all the tracks
and cycles in the time span.

Populate the REQUEST_TRACKS and REQUEST_CYCLES tables.

Read the ISIPS_PRODUCT _ID table and retrieve the unique PID for each combination of
reference orbit ID, reference track and cycle.

[reference track is the first track in a 14 rev granule. For example :1,15,29....]

Populate the SPECIAL_REQUEST _PID table with the PID span.

Subroutines called:

add_to_log_file.tcl - Refer to section 4.1.1 for details
subset.tcl

sort_unique.tcl

find_span.tcl

zero_padding.tcl

zero_out.tcl

orbselect.f90 — Refer to section 2.3.1 for details
convert2j2000.tcl

find_passID.f90

send_mail_mscf.pl - Refer to section 3.1.14 for details
send_mail_user.pl

run_create_maps.ksh

3.3.1subset.tcl

Returns subsetted list.

Input Arguments:

Input list
List of indices to subset list by

Output Arguments:

Output subsetted list

Last updated: 5/8/2012 Page 23 Version 201205.0



3.3.2sort_unique.tcl

Sorts a list and returns indices of elements that are different from each other.

Input Arguments:

- Input list

- Flag indicating whether first index or last index of identical elements is returned

Output Arguments:
- List of indices of unique elements

3.3.3find_span.tcl

Return minimum and maximum entries of a list.

Input Arguments:
- Input list

Output Arguments:
- Minimum value
- Maximum value

3.3.4zero_padding.tcl
Adds proceeding zeros to cycle and track numbers.
Input Arguments:
- Number

- Proceeding zeros (i.e. 000)

Output Arguments:
- Number with proceeding zeros

3.3.5zero_out.tcl
Removes proceeding zeros from cycle and track numbers.

Input Arguments:
- Number

Output Arguments:
- Number without proceeding zeros

Last updated: 5/8/2012 Page 24 Version 201205.0



3.3.6convert2j2000.tcl
This subroutine converts date to J2000 sec

Input Parameters:
- Path where datecon resides
- Date

Output Parameters:
- Date in J2000 sec

3.3.7find_passID.fo0
This program finds the pass ID in the time span and writes them to an output file

Input Parameters:
- Revfile

- Starttime

- Endtime

- Output directory
- Error file

Output File:
- Pass ID file

Error Handling:
- Error opening file
- Error reading file

3.3.8send_mail_user.pl

Synopsis:
Sends email to input email address.

Invocation:
send_mail_user.pl <email_address> <file_with_message> <subject_line>

3.4  data_select_req.tcl

This is the main script to process the special request data. Detail design for the script is in
Section 4.

3.5 run_create_maps.ksh

Last updated: 5/8/2012 Page 25 Version 201205.0



This script runs create_maps.pl.

Input Parameters:
- Subscription ID

Environmental Variables:

export INPUT_DIR=[location of html code on icesatO]

export IMAGE_DIR=[location of plot images on icesat0]
export OUTPUT_DIR=[location of html code on glas-scfweb]
export OUTPUT _JS=[main directory on glas-scfweb]

export REMOTE_HOST=[SCF website hostname]

export IDL_MAIN_DIR=[location of IDL program directory]

3.5.1 create_maps.pl

This program creates a jpeg file of the selected tracks over the selected area for each

subscription.

Input Parameters:
- Subscription ID

Output File:
- JPEG track files

Subroutines:

- get_area_ dates.pm

- get_product_seg.pm
- get_tracks.pm

- get_cycles.pm

- send_mail_local.pm
- initialize_arrays.pm

3.5.1.1 initialize_arrays.pm

Description:
Initializes arrays for database information.

Arguments:
None

Subroutines Called:
None

Last updated: 5/8/2012 Page 26

Version 201205.0



3.5.1.2  get_area_dates.pm

Description:
Retrieves from the database dates and area for each subscription.

Arguments:
Database connection

Subroutines Called:
None

3.5.1.3  get_product_seg.pm

Description:

Retrieves from the database products and segments for each subscription.

Arguments:
Database connection

Subroutines Called:
None

3.5.1.4  get _tracks.pm

Description:
Retrieves from the database a list of tracks for each subscription.

Arguments:
Database connection

Subroutines Called:
None

3.5.1.5  get_cycles.pm

Description:
Retrieves from the database a list of cycles for each subscription.

Arguments:
Database connection

Subroutines Called:

Last updated: 5/8/2012 Page 27

Version 201205.0



None

3.5.1.6  send_mail_local.pm

Description:
Sends message in an email to SCF personnel.

Arguments:
Message
Subject line

Subroutines Called:
None

Last updated: 5/8/2012 Page 28 Version 201205.0



4 Create Products for Special Requests

This script is invoked by readMail.ksh

First the special request script retrieve from the database tables all the data request parameters
relate to the requestld.

The special request software determines which I-SIPS product granules are required to fill the
request. It then reads the parts of the product files that cover the region and the time required and
writes those records to new subsetted product files. The process is finished when all the
associated directories to the product files are created and transferred to the submitters.

Fig 4-2 shows the files hierarchy.

—>| ...... All the routine to request data from ISIPS

[ add_to_log_file (tc) |

| filter_files_by release_or_version (tcl) |

| Isearch_all (tcl) | write_ds_ctrl (tcl) |
| sort_unique_version (tcl) | 1 data_select(fo0) |
| run_ds_pc (tcl) 1 rewrite_req (i90) |
1 write_pc_ctrl (tcl) |
% prod_create (190) |

gapg (f90) |

data_select (ic)) 7 | prepare_browse (tcl)

runbrowse (ksh) |

| create_pass_files (tcl)

| create_unique_files (tcl)

| create_binrev (tcl)

| create_geo (tcl)

| parameters_for_pdr (tcl)

| invoke_perl.ksh

- Distribution

Fig 4-2

&

Last updated: 5/8/2012 Page 29 Version 201205.0



4.1 Main script to process special requests: data_select_req.tcl

Input parameters:
requestld — the data request Id that was assign by the database.
Error file

output files:

subsetted product files and all the associated directories to the product:
- GLAS formatted product files

- Browse product files

- Unique record index for each product file

- Pass directories for each product file

- Binrev directory

- Georeference directory

- Logfile

- PDR and XFR

More details about those files are later in this section.

Also the information can be found in the SCF Architectural Design Document.
output_sr.txt, errors_sr.txt are the output and the errors list text files.

Error Handling:

The script terminates when an error occurs. The error information from all the calling routines is
saved in errorInfo and is written into the log file.

- Can’topenafile

- Error from an external procedure.

- No REQ files were created

Description of Algorithm:

- Fetch from the database all the data request parameters that relate to the requestlid.

- Fetch the PID span related to the requestld from the SPECIAL_REQUEST _PID table.

- Look at the ISIPS_SUBSCRIPTIONS table to see if any of the selected products and
segments are not stored in the mSCF.

- Make a list of all the files that are needed for the special request and are not stored in the
mSCF.

- If request is quick-look, submit the request to ISIPS to get the missing files and email SCF to
get approval form the CCB.

- Make a request to ISIPS to get the missing files

- Continue to complete the request with the existing files.

- Foreach PID:

- List all the files in mSCF data directory with the PID extension

Last updated: 5/8/2012 Page 30 Version 201205.0



- Create the input_files.txt that list all the requested granules with their respected binrev files
- Create the products subsets with all their directories.
- Anytime a BNAOL is created, it copies it to BNAO3 and BNAO4. The same with GRAO1.

Subroutines called:

- find_passID.f90 — Refer to section 3.3.2 for details
- get_pid_j2000.tcl - Refer to section 12.1.3 for details
- check_inst_update.tcl - Refer to section 11.1.4 for details
- add_to_log_file.tcl

- filter_files_by release_or_version.tcl

- lsearch_all.tcl

- sort_unique_version.tcl

- run_ds_pc.tcl

- prepare_browse.tcl

- write_ds_ctrl.tcl

- data_select.f90

- rewrite_req.fo0

- write_pr_ctrl.tcl

- write_pc_ctrl.tcl

- prod_create.f90

- create_pass_files.tcl

- mkpass.fo0

- create_unique_files.tcl

- mkunique_index.f90

- create_binrev.tcl

- mkbinrev.f90

- create_geo.tcl

- mkgeo.f90

- send_mail_mscf.pl

- send_mail_cch.pl

- read_header_val.fo90

4.1.1 add_to_log file.tcl
This subroutine appends to the log file the error file that contains all the error messages

Input Parameters:
error_file_name
tmp_dir

4.1.2 filter_files_by release_or_version.tcl

Input Parameters:
files_list: the list of files to be filtered
release_number:

Last updated: 5/8/2012 Page 31 Version 201205.0



Output Parameters:
filtered_files_list: the files list after being filtered.

Description of Algorithm:
- Sort the list.
- Separate the files by products.
- For each product:
- Group all the files that have the same passID.
- If release_number=0 then:
- Sort the group in decreasing order.

- Take the first one and append it to the filtered files list.

Else:
- Take the files with the given release number

4.1.3 lsearch_all.tcl

Get files that match a pattern.
Details in 5.2.7

4.1.4 sort_unique_version

Input Parameters:

files_list: the list of files to be sorted

flag : flag=0 : selecting the old version
flag=1 : selecting the new version

Output Parameters:
filtered_files_list: the files list after being sorted.

Asumption: The version number is in the last 2 character in the file name

The subroutine sort the files list in decreasing or increasing order , depending on the flag.
In each group of the same file name (accept the last 2 characters) , it selects the first one.

415 run_ds_pc.tcl

This subroutine creates the product subset.
Details in 5.2.9

Subroutine Called:
write_ds_ctrl.tcl

- catch_errors.tcl
- data_select.f90

- rewrite_req.fo0

Last updated: 5/8/2012 Page 32

Version 201205.0



- write_pr_ctrl.tcl
- write_pc_ctrl.tcl
- prod_create.f90

4151  write_ds_ctrl.tcl

writes the control file to data_select.fo0
Details in 5.2.9.1

4.15.2  catch_errors.tcl
Distinguishes between fatal errors and non-fatal errors.

Input Arguments:
- Message with errors written to it that is used to determine fatality of errors
- Error message upon fatal error

Output Arguments:
- None

Global Variables Used:
- errorinfo

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

4.1.6 data_select.f90

Data_select is the first phase of creating geographically and/or temporally sub-setted and super-
setted product files. It reads a control file containing product types, latitude and latitude ranges,
and start and stop times and creates REQ output files containing product file names, unique
record numbers, product record numbers, and pass ID's within the geographic and temporal
spans. After the REQ file is created, the program checks that there is no overlapping in time
inside the file. If there is an overlapping, the program recreates the REQ file with records that
not overlapping. To ensure that all the data within geographic range are obtained, a 1 degree is
added to the border of the selected area.

Input Parameters:
control file name

Example of a control file:

=DATA_SELECT Control file SCF data selection
DATA PATH=/SCF/product_sets/current/L3G

Last updated: 5/8/2012 Page 33 Version 201205.0



REV_FILE=/SCF/ancillary_data/rev_files/total_rev_file.dat
INPUT_FILE=/SCF/tmp/dir_MSCF_12760/input_files.txt
ANC70_FILE=/SCF/ancillary_data/scf70_000_00_00.dat
OUTPUT_PATH=/SCF/tmp/dir_MSCF_12760/
OUTPUT_STRING=r9324_00_L3G.P0486_01 00
DATE_STRING=06110522

START_TIME=214574400

END_TIME=218203200

NLAT=90

SLAT=-90

ELON=180

WLON=-180

PRODUCT=01

PRODUCT=05

MSCF_FLAG=1

=END of control file

where:
- data_path is the directory where the product files are.
- rev_file is the name of the rev file.

- input_file is the name of the file containing the list of binrev file names
- anc70_file is the name of the file containing error numbers and constants.

- output_path is the output directory for the REQ file.

- output_string is the string in the output file name containing request number, laser period,

and PID number.

date_string is the beginning time of the first file in the 14 rev product set received from the I-
SIPS. This information was given from the file header. If the keyword from the header could
not be found, there will be no date_str keyword in the control file and the the date is set to the

requested beginning time.
- start_time, end_time is the requested time span
- nlat, slat, elon, wlon is the selected region

- product is the requested product number. There may be multiple product keywords, one for

each requested product.

- mscf_flag is 1 if the data are on the main SCF meaning that all products are assumed to be
present and BNAOS files are listed in the input_file. Mscf_flag is 0 if the data are not on the
main SCF so the BN files listed in the input_file are those of the requested products.

Example of input_files.txt:

BNAO5 531 2117 002_0099 1 01 0001.P1306
BNAO5_531 2117 002_0099 2 01_0001.P1306
BNAO5_531 2117 002_0099 3 01_0001.P1306
BNAO5_531 2117 002_0099 4 01_0001.P1306
BNAO5 531 2117 002_0100_1_01_0001.P1306
BNAO5_531 2117 002_0100_2 01 0001.P1306
BNAO5 531 2117 002_0100_3_01_0001.P1306

Last updated: 5/8/2012 Page 34

Version 201205.0



BNAO5 531 2117 002_0100 4 01 0001.P1306

Input files:
The control file described above.
The input_file described above.

Output files:
REQ files for each GLAS product. The format for the REQ file is in Appendix C.

To run:
data_select <control file>

Notes on running:
- the library path has to be set before running:
i.e. export SHLIB_PATH=/SCF/lib/ops

- if data_select is run more than once, the following error will occur:

ERROR : -10006, 3, read_rev_file, Error Opening File for Output:
[SCF/tmp/dir_25225/passid_time.bin

Just remove the passid_time.bin file in between runs.

Error Handling:

Calls GLAS _error for the following conditions:

- error getting control file name from argument list
- error reading filenames file

- no BN files to process

- no UR files to process

Returns an exit(3) to the main script

Description of Algorithm:
Refer to Appendix B.1: Flowchart for data_select.fo0

Calling Subroutines:

- const_scf_mod.f90

- anc70_scf _mod.f90

- ANC70_mod.f90

- filesize_mod.f90

- open_bin_file_mod.f90
- fbins_mod.fo0

- common_files_mod.fo0
- read_ds_ctrl_mod.f90

- read_rev_file_mod.f90
- create_geobins_mod.f90

Last updated: 5/8/2012 Page 35 Version 201205.0



- read_filenames_mod.f90
- read_geobins_mod.f90

- read_binrev_mod.f90

- sort_file_mod.f90

- read_unique_mod.f90

- filter_req_mod.f90

- find_uix_delta_mod.f90

4.1.6.1  const_scf_ mod.f90

Defines constants in anc70 file.

4.1.6.2  Anc70 scf mod.fo0

Reads constants in anc70 file.

4.1.6.3 ANC70_mod.f90

Reads anc70 file.

4.1.6.4  filesize_mod.f90

Returns the size of a file in bytes

4.1.6.5 open_bin_file_mod.fo0

Contains routines to open direct access binary files with and without headers and return the
number of lines in file.

4.16.6  fbins_mod.fo0

Determines bin configuration.

4.1.6.7  common_files_mod.f90

Contains names, lun's, record sizes, and number lines variables of files used in data_select.

4.1.6.8 read_ds_ctrl_mod.f90

Reads control file and anc70 constants/errors file.

Last updated: 5/8/2012 Page 36 Version 201205.0



4.1.6.9 read_rev_file_mod.f90

Reads rev file and outputs file with pass ID's filtered by requested time span

4.1.6.10 create_geobins_mod.f90

Creates georeference bins from requested lat/lon range and outputs bin numbers to a file
If the requested area is the whole world, data_select.f90 doesn’t use the routine.

4.1.6.11 read_filenames_mod.f90

Reads file containing input BN and UR file names

4.1.6.12 read_geobins_mod.f90

Reads georeference file and file with georeference bin numbers and outputs file with bin
numbers

4.1.6.13 read_binrev_mod.f90

Reads binrev file, file with bin numbers based on requested lat/lon, file with pass ID's based on
requested time span and outputs file with sorted unique record numbers and pass ID's filtered by
time and location

4.1.6.14 sort_file_mod.f90

Sorts file with sorted unique record numbers and pass ID's filtered by time and location

4.1.6.15 read_unique_mod.f90

Reads the unique record file and file with sorted unique record numbers and pass ID's filtered by
time and location and outputs the REQ file containing product file names, unique record
numbers, product record numbers, and pass ID's.

4.1.6.16 filter_req_mod.f90

Filters REQ files for duplicate and overlapping unique record numbers.

Error Handling:

Calls GLAS_error for the following conditions:
- error opening input file

- error reading input file

- error writing input file

- no product files listed for product type

Last updated: 5/8/2012 Page 37 Version 201205.0



- index of array is greater than dimension allowed
Returns an exit(3) to the main script

Description of algorithm:
- Open input file
- If no product files are listed in input file, skip
- Read header records into array
- Determine product number from REQ file name
- Determine number of data lines in file
- Allocate arrays for sorted array indices and data
- Read REQ file
- Read the mode if the product is GLAO1
- Add beginning unique rec num to array for sorting
- Close REQ file after reading
- Sort array by beginning unique rec num (output is array of sorted indices)
- Write data into sorted array 2
- If file just has one line, just copy over
- Filter sorted array 2 into array 3
- Ifindex for array 2 is last line, assign last record and exit
- If adjacent records are for the same GLA file, then start times
are already sorted, so just copy info over and exit
- Times do not overlap - just copy over
- Overlapping records:
- Second record is within first - use first record
- Assign next record in array2 to value of current record
- Second record overlaps first - resize first record
- GLAO1 has 1 sec unique records composed of 3 or 6
product records
- GLAO08-11 have 4 sec records
- Other products have 1 sec records
- First rec ends at start of overlapping second rec
- Open REQ file again for writing
- Write headers into new REQ
- Write filtered array 3 to REQ file
- Close REQ file after writing
- Deallocate arrays

4.1.6.17 find_uix_delta_mod.fo0

Determines span between unique index records by reading product header for VersionID value.

Input Parameters:
in_file: product file name

Output Parameters:

Last updated: 5/8/2012 Page 38 Version 201205.0



i_release: data release
i_ur_delta: span between unique index records based on data release

Error Handling:

Calls GLAS_error for the following conditions:
- error opening input file

- error reading input file

Description of algorithm:
- Open input file (get number header lines and record length)
- Read input file (get header value for header name)
- If no header, assume it's a pre-release 31 file
- Get release from file header
- Determine UR delta from product release
- Close input file

4.1.6.18 rewrite_req.fo0

input parameters:
- input_file: REQ file to be modified. The format for the REQ file is in Appendix C.
- track_file: a text file that contains a list of the tracks the user selected

Format:

n8: number of 8 days repeat tracks
tl

t2

n91: number of 8 days repeat tracks
tl
t2

(When the user select no processing , the track will get the value -1.
When the user select processing without selecting specific tracks, the track will get the value 0)
- out_file: the REQ file after being modified

Description of algorithm:

Read the track file

- If the first track for the 8 days repeat is zero, and first track for the 91 days repeat is zero,
copy the input file to the out_file and return.

- For each record in the input file:

- Read the the passID

- retrieve the tracks number and the reference ID.

Last updated: 5/8/2012 Page 39 Version 201205.0



- If the reference ID is 3 or the track equal to one of the tracks from the track file ,write the
record into the out_file.

4.1.7 write_pr_ctrl.tcl

Write the control file for parse_req.fo0
Detail in 5.2.9.2

4.1.8 write_pc_ctrl.tcl

Write the control file for prod_create.f90
Detail in 5.2.9.3

4.1.9 parse_req.fo0

Reads REQ files and determines if an REQ will produce a GL file > 2 GB. If so, then the REQ
file is divided into more than one file.

Input Parameters:
control file name

Example of a control file:

=PARSE_REQ Control file SCF data selection

DATA PATH=/SCF/tmp/dir_UTCSR_19557/
INPUT_FILE=/SCF/tmp/dir_UTCSR_19557/REQ02_00010112_r0578.P0014 01_00
ANC70_FILE=/SCF/src/common/2001_11 01/scf70_000_00_00.dat

where:

- data_path is the directory where the product files are.
- input_file is the REQ file path and name

- anc70 _file is where the errors list and constants are.

input files:
- The control file that was described above.
- REQ files. The format for the REQ file is in Appendix C.

output files:

REQ files for each GLAS product. The format for the REQ file is in Appendix C.

If the resultant product file is determined to be less than 2 GB, then the input REQ is output. If it
is determined to be greater than 2 GB then the input REQ is parsed into multiple REQ files such
that each one will not produce a product file greater than 2 GB.

Error Handling:
Calls GLAS_error for the following conditions:
- error getting control file name from argument list

Description of Algorithm:
- Boot GLAS_Error

Last updated: 5/8/2012 Page 40 Version 201205.0



- Get the control file name

- Read control file for input/output file names and read anc70 file

- Add ending / to data_path if necessary

- For each input file (corresponding to product type)

- Read REQ file and write to separate files if one file will exceed 2 GB
- End with error severity

Subroutines Called:

- const_scf_mod.f90

The above subroutines have been documented previously
- read_pr_ctrl_mod

- read_req_mod

4.1.9.1 read_pr_ctrl_mod.f90

Reads control file.

4.1.9.2 read_req_mod.f90

Reads REQ file and determines if it needs to be parsed into separate files so that a resultant GL
file does not exceed 2 GB

Subroutines Called:

- const_scf_mod.f90

- open_bin_file_mod.f90

- common_files_mod.fo0

The above subroutines have been documented previously
- prod_common_mod.f90 — Refer to section 4.1.5.7.1

- write_req_mod

4.1.9.3  write_req_mod.f90

Writes new REQ files from original REQ

4.1.10 prod_create.fo0

Runs code to create product subsets based upon input file containing product names, lat/lon
range, and time span.

input parameters:
control file name.

Example of a control file:

Last updated: 5/8/2012 Page 41 Version 201205.0



=PROD_CREATE Control file SCF data selection

DATA PATH=/SCF/tmp/dir UTCSR_19557/
INPUT_FILE=/SCF/tmp/dir_UTCSR_19557/REQ02_00010112_r0578.P0014_01_00
ANC70_FILE=/SCF/src/common/2001 11 01/scf70 000 00 00.dat

where:

- data_path is the directory where the product files are.
- input_file is the REQ file path and name

- anc70_file is where the errors list and constants are.

input files:
- control file.
- REQ files. The format for the REQ file is in Appendix C.

output files:
One output product is created per product type. The file has the GLAS format.

Error Handling:

Calls GLAS_error for the following conditions:

- error getting control file name from argument list
- error reading a header

- error in reading the control file

- error reading product file

Returns an exit(3) to the main script

Description of Algorithm:
Refer to Appendix B.2: Flowchart for prod_create.f90

Subroutines Called:

- const_scf_mod.f90
anc70_scf_mod.f90

- ANC70_mod.f90
filesize_mod.f90
open_bin_file_mod.f90
The above subroutines have been documented previously
- prod_common_mod.f90
- prod_reader_mod.f90

- prod_writer_mod.f90

- read_pc_ctrl_mod.f90

- read_prod_recs_mod.fo0

4.1.10.1 prod_common_mod.f90

Subroutines Included:
- scale_init: Initializes product scales

Last updated: 5/8/2012 Page 42 Version 201205.0



- prod_init_in: Initializes input file structure and opens input file
- prod_init_out: Initializes output file structure and opens output file.

4.1.10.2 prod_reader_mod.f90

Reads a record from a product file

4.1.10.3 prod_writer_mod.f90

Writes a record into a product file.
For all products except GLA01,GLA02,GLA03,GLAOQ4- only writes output if record is within
input time span and lat/lon range.

4.1.10.4 read_pc_ctrl_mod.f90

Reads control file.

4.1.10.5 read_prod_recs_mod.fo0

Reads REQ files one record at a time. The format for the REQ file is in Appendix C.

4.1.11 prepare_browse.tcl

Creates the browse products.
Prepares the control files and runs the program to create the browse product.

Input parameters:

Bin_path, tmp_dir, gl_list

Where:

GI_list is a list of all the products created by data_select.f90

Output parameters:
gaplist: list of created QAP files

Program Calls:
- Qgapg.fao
- runbrowse.ksh

4.1.11.1 qgapg.f90

Generate QAP file from product.
Code in /SCF/src/qapg/

Last updated: 5/8/2012 Page 43 Version 201205.0



Input Parameters:

Control_file

Consist of:

=PROD_VER Control file for product verification
INPUT_FILE=anc07_001_01_0000.dat
INPUT_FILE=anc07_001_01_0006.dat
INPUT_FILE= [product file]

OUTPUT _FILE=[product_file].QAP

= End of control file

Error Handling:
Calls Glas_error for the following conditions:
- error getting control file name from argument list

4.1.11.2 Runbrowse.ksh
A script that opens idl and runs the routines to create the browse products.

Program calls:
Qabrowse.pro

4.111.2.1 Qabrowse.pro

Generates the browse products

Input Parameters:
Control_file

Consists of:

=QABROWSE
VERSION=[product version]
INPUT_FILE=[qgap file name]
OUTPUT_DIRECTORY=
OUTPUT_FORMAT=png

4.1.12 create_pass_files.tcl

Create the pass directories.
Details in 5.2.3

Program Calls:
mkpass.fo0

4.1.13 mkpass.f90

Creates a directory correlating the passID and the GLAS product file unique index record.

Last updated: 5/8/2012 Page 44 Version 201205.0



One data record is written every time a passID is changed in the file.

Input parameters:
control file name.

Here is an example of a control file:

=MKPASS Control file SCF data selection
INPUT_FILE=GLAO5_002_1101_001 0028 2 _01_01.P0001
INPUT_FILE=GLAO5_002_1101_001 0028 3 01_01.P0001
INPUT_FILE=GLAO6_002_1101_001 0028 2 01_01.P0001
TIME_PASS_FILE=/SCF/ancillary_data/rev_files/total_rev_file.dat
OUTPUT_PATH=
ERR_FILE=/SCF/src/common/V2_prelim/scf70_000_00 00.dat
=END of control file

where :

- input file is the GLAS product file

- time_pass_file is the rev file that has the time each pass starts
- output_path is the output directory

- err_file is the SCF Constants and Error File

input file:
control file

output file:

pass directory . (sometimes is called pass table).

The format and description of the pass directory is in the SCF Architectural Design Document.
(5.3.2.1)

Error Handling:

Calls GLAS_error for the following conditions:

- error getting control file name from argument list
- error reading filenames file

- error opening output file

- error writing output file

- the time/pass table does not cover the input time
Returns an exit(3) to the main script.

Description of Algorithm:

- Boot GLAS_Error

- Get the control file name

- Read control file for input/output file names

- Open and read the anc70 (Error/Status) file for GLAS_Error usage
- Read the time in the first and the last record of the product file

- Read rev files in the time covers by the product file.

- Set the time-passID table

Last updated: 5/8/2012 Page 45 Version 201205.0



- Initialize the pass:
- Read the latitude in all the records in the file.
- Loop over the GLAS file records
- Read the time

- Call the find_pass routine to find the passID for the time

- If the time is less than the first time in the time/pass table, read the next record in GLAS

file
- ifapassiID is found:
- Check if you are in the forth segment.

- If no, then your init passID is the one that was found

- If yes, then your init passID is the pass before the one that was found. (if the
passID that was found is the first one in the table then read the next record in

GLAS file and do not exit the loop
- exit the loop.

- If no passID is found then read the next input file
- if no passID is found for all the input files, exit the program

- After the initialization ends successfully:
- Read the records in all the input files.
- For each record:

- Call the find_pass routine to find the passID for the time

- Check that if we are at the forth segment, the passID will be the one before.

- If no pass is found:

- write to the pass file the passID and the unique record indices that refers to the

beginning and the ending of the last pass
- Exit the program
- If the pass is different from the last one:

- Write to the pass file the passID and the unique record indices that refer to the

beginning and the ending of the last pass
- After the last record is read:

- Write to the pass file the passID and the unique record indices that refer to the

beginning and the ending of the last pass

Subroutines Called:

- const_scf_mod.f90

- anc70_scf_mod.f90

- filesize_mod.fo0*

- ANC70_mod.f90

- prod_common_mod.f90
- prod_reader_mod.f90

- open_bin_file_mod.f90

The above subroutines have been documented previously.

- read_pass_control_mod.fo0
- read_glas_record_mod.f90
- gsorti_mod.f90

- find_pass_mod.f90

Last updated: 5/8/2012 Page 46

Version 201205.0



4.1.13.1 read_pass_control_mod.f90

Reads the control file

4.1.13.2 read_glas_record_mod.fo0

Reads a record from a GLAS product file and passes to the main time, lon ,lat , unique record
index and record type.
It gives the first valid value in the 40 Hz array rather than just the first value of the array.

4.1.13.3 qsorti_mod.f90

Sorts an array.

Input Parameters:
n, a, ord

where:
- N: length of the array

- A the array to be sorted
- Ord: alist of indices of the ordered array.

4.1.13.4 find_pass_mod.f90

Finds in the time/pass table a corresponding pass to an input time.

4.1.14 create_unique_files.tcl

Create the control file for mkunique_index.f90
Details at 5.2.5

Program Calls:
mkunique_index.f90

4.1.15 mkunique_index.f90

Creates a directory that allows one to calculate the data records within a file that correspond to
specific unique record index numbers.

One data record is written every time there is a break in unique record index in the file or for
GLAO1, a record also has to be written every time the waveform record mode changes.

Input parameters:
control file name

Here is an example of a control file:

Last updated: 5/8/2012 Page 47 Version 201205.0



=GLAS_INDEX Control file SCF data selection
INPUT_FILE=GLA08 001 1101 001 0015 0 _01_01.P0003
INPUT_FILE=GLA09 001 1101 001 0029 0 01 01.P0003
INPUT_FILE=GLA09 001 1101 001 0043 _0_01_01.P0003
OUTPUT _FILE PATH=
ERR_FILE=/SCF/src/common/V2_prelim/scf70_000_00_00.dat
=END of control file

where:

- input file is the GLAS product file name

- output_file_path is the output directory

- err_file is the SCF constants and errors file.

input file:
control file

output file:
unique record index file.

The format and description of the unique record index file is in the SCF Architectural Design
Document. (5.3.2.1)

Error Handling:

Calls GLAS _error for the following conditions:

- error getting control file name from argument list
- error reading filenames file

- error opening output file

- error writing output file

- Unique record is out of order.

Description of Algorithm:

- Boot GLAS_Error

- Get the control file name

- Read control file for input/output file names

- Open and read the anc70 (Error/Status) file for GLAS_Error usage

- Read the records in all the input files.

- For each record and each file:

- Get the unique record index and the UTC time

- if the unique record index is different from the last one, and bigger than the last one:

- write to the output file the unique record indices that refer to the beginning and the
ending of the last unique record and the file record number and the UTC time that refers
to the beginning of that unique record.

After the last record is read:

- write to the output file the unique record indices that refer to the beginning and the
ending of the last unique record and the file record number and the UTC time that refers
to the beginning of that unique record.

Last updated: 5/8/2012 Page 48 Version 201205.0



Subroutines Called:

- anc70_scf_mod.f90

- filesize_mod.f90

- ANC70_mod.f90

- prod_common_mod.f90

- prod_reader_mod.f90

- unig_glas_record_mod.f90

- open_bin_file_mod.f90

- gsorti_mod.f90

- const_scf_mod.f90

The above subroutines have been documented previously.
- find_uix_delta_mod.f90 — Refer to section 4.1.6.17
- read_glas_unique_control_mod.f90

4.1.15.1 read_glas_unique_control_mod.f90
Reads the control file.

4.1.16 create_binrev.tcl

Create the control file to run mkbinrev.f90
Details at 5.3.1

Program Calls:
mkbinrev.f90

4.1.17 mkbinrev.f90

Creates a directory correlating the bin number and the passID to the unique record indices in the
GLAS product files. The program reads from a file the UTC time, longitude, latitude and unique
record number and calculates the bin index from the longitude and latitude, and the pass from a
rev table and writes to the output file the old bin, the pass that belongs to the record where the
old bin was calculated for the first time, and the beginning and ending unique record for the old
bin number.

No binrev file is created for GLAO3 and GLAO4. These products have no longitudes and
latitudes.

Input Parameters:
control file name.

Example of the control file:
=MKBINREYV Control file SCF data selection
INPUT_FILE=GLAO05_002_1101_001_0028 2 _01_01.P0001

INPUT_FILE=GLAO5 002 1101 001 0028 3 01 01.P0001
INPUT_FILE=GLAO5_002_1101_001_0028 4 _01_01.P0001

Last updated: 5/8/2012 Page 49 Version 201205.0



TIME_PASS_FILE=/SCF/ancillary_data/rev_files/total_rev_file.dat
OUTPUT_FILE=BNA_1101_001_0015.P0001_00
ERR_FILE=/SCF/src/common/V2_prelim/scf70_000_00 00.dat
=END of control file

where:

- input file is the GLAS product file

- time_pass_file is the rev file that has the time each pass starts
- output_file is the binrev file name

- err_file is the SCF Constants and Error File

input file:
control file

output files:

binrev directory (sometimes is called bin table).

The format and description of the binrev directory is in the SCF Architectural Design Document.
(5.3.2.1)

Error Handling:

Calls GLAS_error for the following conditions:

- error getting control file name from argument list
- error reading the control file

- error reading GLAS product file

- error openning output file

- error writing output file

- the time/pass table does not cover the input time
Returns an exit(3) to the main script

Description of Algorithm:
- Boot GLAS_Error
- Get the control file name
- Read control file.
- Open and read the anc70 (Error/Status) file for GLAS_Error usage
- Read rev file
- Sort the rev records by time
- Initialize the bin and passID:
- Loop over the GLAIn file records
- Read the time, longitude and latitude
- Call getlbin to calculate the bin index
- Call the find_pass routine to find the passID for the time
- If the time is less than the first time in the time/pass table, read the next record in
GLAIN file; exit the loop if a pass is found.
- If no pass is found then read the next input file; if no pass is found for all the input
files, exit the program.
- After the initialization ends successfully:

Last updated: 5/8/2012 Page 50 Version 201205.0



- Read the records in all the input files.
- For each record:
- Call getlbin to calculate the bin index
- Call the find_pass routine to find the passID for the time and the end time for this
passiD
- If no pass is found:
- Write to the bin/rev file the bin, passID and the unique record indices that refers
to the beginning and the end of the last bin
- Exit the program
- if the bin is different from the last one or time is greater than the end time of the
passiID:
- Write to the bin/rev file the bin, passID, and the unique record indices that refer to
the beginning and ending of the last bin
- After the last record is read (of the last input file),
- Write to the bin/rev file the bin, passID and the unique record indices that refer to the
beginning and the endong of the last bin

Subroutines Called:

- const_scf_mod.f90

- anc70_scf _mod.f90

- filesize_mod.f90

- ANC70_mod.f90

- prod_common_mod.f90

- prod_reader_mod.f90

- fbins_mod.f90

- open_bin_file_mod.f90

- read_gls_record_mod.f90

- gsorti_mod.f90

- find_pass_mod.f90

The above subroutines have been documented previously.
- read_binrev_control_mod.f90

4.1.17.1 read_binrev_control_mod.f90

Read the control file.

4.1.18 create_geo.tcl

Create the control file to run mkgeo.f90
Details at 5.3.3

Program Calls:

mkgeo.f90

4.1.19 mkgeo.f90

Last updated: 5/8/2012 Page 51 Version 201205.0



The program reads the bin/rev file and sorts the file by bins. Then it rewrites the bin/rev file.
The program reads the file again and if a bin has more than one row in the file than it sorts the
rows of the same bin by beginning unique record, and rewrites the bin/rev file.

The new bin/rev file is now sorted by bin and by unique records in each bin.

The program reads the bin/rev again and writes to a geo file the bin and the beginning and the
ending record of each bin as it appears in the bin/rev file.

Input Parameters:
control file name.

Here is an example of a control file:

=MKGEO Control file SCF data selection

INPUT_FILE=BNA 1101_001_0029.P0001_00
OUTPUT_PATH=
ERR_FILE=/SCF/src/common/V2_prelim/scf70_000_00 00.dat
=END of control file

where:

- input file is the binrev file name

- output path is the output directory

- err_file is the SCF constants and errors file.

input file:
control file

ouput file:

georeference directory. (sometimes is called georeference table).

The format and description of the georeference directory is in the SCF Architectural Design
Document.(5.3.2.1).

Error Handling:

Calls GLAS_error for the following conditions:

- error getting control file name from argument list
- error opening input file

- error reading bin/rev file

- error opening output file

- error writing to the output file

- array size is bigger than the size declared

Returns an exit(3) to the main script

Description of Algorithm:

- Boot GLAS_Error

- Get the control file name

- Read control file for input/output file names

Last updated: 5/8/2012 Page 52 Version 201205.0



- Open and read the anc70 (Error/Status) file for GLAS_Error usage

- Open the outfile and write the headers

- Open the bin/rev file and read it

- Sorting the records by bin index

- Rewrite the bin/rev file with the records sorted

- Reading the bin/rev file again

- When there are identical bins, sort them by unique record index

- Rewrite the bin/rev file with the unique record indices sorted

- Write into the output file the bin index and the begin and end of the bin/rev record number of
that bin

- Close the file units

Subroutines Called:

- const_scf_mod.f90

- anc70_scf_mod.f90

- filesize_mod.f90

- ANC70_mod.f90

- prod_common_mod.f90

- prod_reader_mod.f90

- open_bin_file_mod.f90

- gsorti_mod.f

The above subroutines have been documented previously.
- read_geo_control_mod.f90

4.1.19.1 read_geo_control_mod.fo0
Reads the control file

4.1.20 parameters_for_pdr.tcl
See 6.0

4.1.21 invoke_perl.ksh
See 6.0

4.1.22 compare_lists.tcl

Compares multiple lists to see if they each have the corresponding
parameter for the same index (agree).

Returns 1 if they agree

Returns O if they do not agree or if any parameters are not found
Returns -1 upon error

Input Arguments:
- Any number of lists and parameters
- Argument list has to be of the form:
listl parameterl list2 parameter2...
- It doesn’t make sense to run this routine with less than two lists to compare

Last updated: 5/8/2012 Page 53 Version 201205.0



- Each list must have a parameter after it even if it is a duplicate

examples:
{GLAO1 GLAO2} GLAO02 {2332 2334} 2334
Do we have track 2334 for GLA02? — yes

{GLAO1 GLAO2} GLAO01 {2332 2334} 2334
Do we have track 2334 for GLAO1? - no

Output Arguments:
- None

Global Variables Used:
- errorinfo
- bin_path

Output Files:
- None

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error running subroutine

Routines Called:
- lIsearch_all_idx.tcl

4.1.23 lIsearch_all _idx.tcl

Returns list of all list indices that match Isearch pattern.
Input Arguments:

- Input list

- Pattern

Output Arguments:
- Output list

Global Variables Used:
- None

Output Files:
- None

Last updated: 5/8/2012 Page 54 Version 201205.0



Error Handling:
- None

Routines Called:
- None

4.1.24 send_mail_mscf.pl

Synopsis:
Sends email to mSCF personnel.

Invocation:
send_mail_mscf.pl <file_with_message> <subject_line>

4.1.25 send_mail_ccb.pl

Synopsis:
Sends email to CCB personnel.

Invocation:
send_mail_cch.pl <file_with_message> <subject_line>

4.1.26 read_header val.f90

Reads input file and returns requested header value.

Input parameters:
- in_file
- header

Error Handling:

Calls Glas_error for the following conditions:
- error opening file

- error reading file

Description of Algorithm:

- Open and read the anc70 (Error/constants) file for GLAS_Error usage
- Open input file (get number header lines and record length)

- Read input file (get header value for header name)

- Close input file

Calling Subroutines:
- open_bin_head — Refer to open_bin_file_mod.f90 in section 4.1.6.5 for details

Last updated: 5/8/2012 Page 55 Version 201205.0



- get_header_val_mod.f90

4.1.26.1 get_header_val_mod.f90

Returns value of requested header in input file.

Input parameters:
- file

- i_lun
i_rec_len
i_num_head
header

Output parameters
- header_value
- i_err_sev

Error Handling:
Calls Glas_error for the following conditions:
- error reading file

Description of Algorithm:

- Read up to i_num_head headers

- Parse the header line by the delimiter ;"

- May have up to gi_max_num_seg header statements on one line
- Parse header into keyword=value

- Assign remaining header line to temp line

Calling Subroutines:

- parse_keyval — In GSAS common libraries
- compare_kval - In GSAS common libraries

Last updated: 5/8/2012 Page 56

Version 201205.0



5 Processing Data

5.1 Invocation

Processing and storing data is invoked with the script /SCF/bin/ops/run_process_data.ksh. This
script defines environment variables needed to run the data processing software and creates an
error file that is sent to SCF personnel via email upon error.

5.2 Environment Definitions

export ISIPS_PATH=[location of I-SIPS files before processing]

export ICESAT_PRODUCT_SET=[location of mSCF files after processing]
export ICESATVIS_BIN=[location of the executable and script files]

export ICESATVIS_DATA =[location of the processed_pass files ]

export DELETED_DATA_PATH=[path for deleted files]

export ACCTEST_DIR=[name of acctest directory]

export REV_FILE=][rev file]

export PROC_8 PASS=[name of process_8 pass.txt file]

export PROC_91 PASS=[name of process_91 pass.txt file]

export SCF_ERROR_FILE=[location of the error/constants file]

export TMP_DIRECTORY=[name of the temporary directory]

export SRC_DIR=[path to the Perl scripts]

export DB_NAME=[name of mysql database]

export DB_USER=[username for mysql database]

export DB_PASSWD=[password for mysql database]

export PROC_FILE=[name of processing file to check for]

export DEL_FILE=[name of file containing deleted file names]

export PROD_REL_FILE=[name of file containing products and releases]
export CURRENT _REFID=[current reference orbit to be processed first]
export PLOT_FILE=[name of file containing plot information]

export DUP_FLAG=[flag indicating if check for duplicate files should be run (0=no,1=yes)]
export PLOT_FLAG=[flag indicating if plot file should be written (0=no,1=yes)]

5.3 Main script to process data: process_data.tcl

Synopsis:

As each product set is received from the I-SIPS, they are each renamed with a PID and database
management files are created including binrev directories, georeference directories, pass
directories, and unique index files. They are then stored at the mSCF. Entries are created in the
CREATION database table with columns set to run subscriptions and energy analysis programs.

Assumptions:

- Files downloaded from I-SIPS are placed in tmp directory defined by environmental variable
ISIPS_PATH along with an FN file and FN XFR. For a description of the FN file, refer to
the SCF Interface Software Detailed Design Document.

Last updated: 5/8/2012 Page 57 Version 201205.0



- There is only one PID per distribution ID

- There is only one release per distribution 1D

- Only GLA product files are received from the I-SIPS.

- One BN, GR, PS, and UR file will be created per product.

Error Handling:

The script terminates when an error occurs. The error information from all the calling routines is
saved in errorInfo and is written into the log file.

- Can’t open or connect to the database

- Error from an external procedure.

- Error from a subroutine.

Description of Algorithm:
Refer to Appendix B.3: Flowchart for subscription.tcl

Output Files:
- ISCF/tmpl/plot_info.txt.

Subroutines called:

- get_file j2000.tcl - Refer to section 12.1.2 for details

- check_inst_update.tcl - Refer to section 11.1.4 for details
- read_header_val.f90 - Refer to section 4.1.26.1 for details
- create_binrev.tcl

- create_geo.tcl

- create_pass_files.tcl

- create_unique_files.tcl

- find_track.tcl

- read_fn_file.tcl

- modify_processed_tracks.tcl

- scp_rev_file.ksh

- check_rev_time.tcl

- check_pid.tcl

- time_sort.tcl

- update_prod_rel_file.tcl

5.3.1create_binrev.tcl

Creates the control file and runs mkbinrev, which creates the binrev directory for the input list of
product files.

Input Arguments:

- Output directory

- Control file name

- Product file list

- Flag indicating if product names are “mscf” convention or “rscf” convention
- Reference orbit number

Last updated: 5/8/2012 Page 58 Version 201205.0



Output Arguments:
- BN file name

Global Variables Used:
- errorinfo

- bin_path

- scf_error_file

- rev_file

Output Files:
BNA or BNL file

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error from an external procedure.

- Error from a subroutine.

- Error opening control file

- Error if name_flag indicates neither mscf or rscf naming convention

Routines Called:

- find_track.tcl

- sort_pass.tcl

- mkbinrev.f90 — Refer to section 4.2.10 for more information

5.3.2create_geo.tcl

Creates the control file and runs mkgeo, which creates the georeference directory for the input
binrev file.

Input Arguments:

- Output directory

- Control file name

- BN file name

- Flag indicating if products are “mscf” or “rscf”: if “mscf” then BNA03-4/GRA03-4 are
copied from GLAOZ2; if “rscf” then they are copied from GLAO1

Output Arguments:
- None

Global Variables Used:

- errorinfo
- bin_path

Last updated: 5/8/2012 Page 59 Version 201205.0



- scf_error_file

Output Files:
GRA or GRL file

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error from an external procedure.

- Error opening control file

Routines Called:
- mkgeo.f90 - Refer to section 4.2.11 for more information

5.3.3create_pass_files.tcl

Creates the control file and runs mkpass, which creates the pass directories for the input product
files.

Input Arguments:

- Output directory
- Control file name
- Product file list

Output Arguments:
- None

Global Variables Used:
- errorinfo

- bin_path

- scf_error_file

- rev_file

Output Files:
PS file(s)

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error from an external procedure.

- Error opening control file

Routines Called:

Last updated: 5/8/2012 Page 60 Version 201205.0



- mkpass.f90 - Refer to section 4.2.13 for more information

5.3.4create_unique_files.tcl

Creates the control file and runs mkunique_index, which creates the unique index files for the
input product files.

Input Arguments:

- Output directory
- Control file name
- Product file list

Output Arguments:
- None

Global Variables Used:
- errorinfo

- bin_path

- scf_error_file

Output Files:
UR file(s)

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error from an external procedure.

- Error opening control file

Routines Called:

- mkunique_index.f90 - Refer to section 4.2.12 for more information

5.3.5find_track.tcl

Determines the integer track from a 4 character track string

Input Arguments:
- String track (4 characters containing preceding zeros)

Output Arguments:
- Integer track

Global Variables Used:

Last updated: 5/8/2012 Page 61 Version 201205.0



- None

Output Files:
- None

Error Handling:
- None

Routines Called:
- None

5.3.6read_fn_file.tcl

Reads the FN file. For a description of the FN file, refer to the SCF Interface Software Detailed
Design Document.

Input Arguments:
- FN file name

Output Arguments:

- List of file names from FN file
- Distribution ID

- Quick-look indicator (0/1)

Global Variables Used:
- errorinfo

Output Files:
None

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error opening the FN file

Routines Called:
- Read_keyword.tcl

2.3.5.17 read_keyword.tcl

This routine reads a line and separates the value from the keyword.
If the line follows the standard GLAS header format it returns O.
If the line does not follow this format it returns -1.

Last updated: 5/8/2012 Page 62 Version 201205.0



Assumptions:

Assumes that the line follows standard GLAS header format: keyword = value;

Whitespace doesn't matter.

Input Arguments:
- line (string)

Output Arguments:
- keyword
- keyvalue

Global Variables Used:
- none

Output Files:
- none

Error Handling:
- none

Routines Called:
- none

5.3.7modify_processed_tracks.tcl

Update the processed_pass file if a new track has been processed.

Input Arguments:
- List of GLAOL1 files
- 8or91 day processed pass file

Output Arguments:
- scp flag (0/1=nolyes)

Global Variables Used:
- bin_path

- mscf_path

- anc_data_path

Output Files:
- Creates or appends to 8 or 91 day processed pass file in mscf_path
- Appends to 8 or 91 day processed pass file in anc_data_path

Error Handling:

Last updated: 5/8/2012 Page 63

Version 201205.0



- Returns the error number to the calling script

Routines Called:
- None

5.3.8scp_rev_file.ksh

Scp afile to all rSCF’s.

Assumptions:
The file is copied to same directory on the remote site that it is taken from on the mSCF

Input Arguments:
- Directory to copy from and to
- File name

Output Arguments:
- None

Global Variables Used:
- None

Output Files:
- None

Error Handling:
- None

Routines Called:
- None

5.3.9check_rev_time.tcl

This routine checks time of file against last rev file time. It also returns the laser time period and
laser refID.

If file time <= rev time return 0.

If file time > rev time return 1.

Returns 2 upon error.

Assumptions:
Assumes that rev file is a binary file of 28 bytes per record and the first real*8 is the time in
J2000sec.

Input Arguments:

Last updated: 5/8/2012 Page 64 Version 201205.0



- Product file name
- Rev file name

Output Arguments:
- Laser time period (from get_data_directory.tcl)
- Laser refID (from get_data_directory.tcl)

Global Variables Used:
- errorinfo
- bin_path

Output Files:
- None

Error Handling:

- Returns the error number to the calling script
- Error from an external procedure.

- Error from a subroutine.

Routines Called:

- get_data_directory.tcl

- read_keyword.tcl: Refer to section 2.3.5.17 for details
- convert2j2000.tcl: Refer to section 2.6.1 for details

2.3.5.18 get_data_directory.tcl

This routine Finds the data directory based on time from the database.

Assumptions:
Assumes that the MySQL database is already open.

Input Arguments:
- Time in J2000 secs

Output Arguments:
- Laser time period
- Laser refID

Global Variables Used:
- errorinfo

- bin_path

- conn

Output Files:
- None

Last updated: 5/8/2012 Page 65

Version 201205.0



Error Handling:
- None

Routines Called:
- None

5.3.10 check_pid.tcl

This routine checks if files are in the same 14 rev PID as first file.

If yes return 0.
If no return 1.

Assumptions:

Assumes mSCF naming convention

Input Arguments:
- Product file list

Output Arguments:
- None

Global Variables Used:

- errorinfo
- bin_path

Output Files:
- None

Error Handling:
- None

Routines Called:

- find_track.tcl: Refer to section 5.3.5 for details

5.3.11 time_sort.tcl

This routine sorts input file list by ascending time and returns sorted file list.

Assumptions:

- File names in list must include full path

Input Arguments:
- Listto be sorted

Last updated: 5/8/2012

Version 201205.0



Output Arguments:
- Sorted list

Global Variables Used:
- None

Output Files:
- None

Error Handling:
- None

Routines Called:
- None

5.3.12 update_prod_rel_file.tcl

This routine updates the product_release file if the input release is greater than the release in the
file for that product.

Assumptions:
- None

Input Arguments:

- Product_release file name

- Release

- List of unique reference products (i.e. GLAO1, GLA02)

Output Arguments:
- None

Global Variables Used:
- errorinfo
- bin_path

Output Files:
- Product_release file is overwritten

Error Handling:

- Returns the error number to the calling script
- Error opening product_release file

- Error if new release < file release

Routines Called:

Last updated: 5/8/2012 Page 67 Version 201205.0



- None

Last updated: 5/8/2012 Page 68 Version 201205.0



6 Fulfilling Subscriptions

6.1 Invocation

Fulfilling subscriptions is invoked with the script /SCF/bin/ops/run_process_subs.ksh. This
script defines environment variables needed to run the subscription software and creates an error
file that is sent to SCF personnel via email upon error.

6.2 Environment Definitions

export SHLIB_PATH= [location of the shared libraries]

export ICESATVIS_BIN=[location of the executable and script files]

export ANCO7_FILE1=[location of ancO7_001_01_0000.dat file for qapg]

export ANCO7_FILE2=[location of ancO7_001_01_0003.dat file for qapg]

export ANCO7_FILE3=[location of ancO7_001_01_0004.dat file for qapg]

export ANCO7_FILE4=[location of ancO7_001 01 0006.dat file for gapg]

export REV_FILE=[rev file]

export SCF_ERROR_FILE=[location of the error/constants file]

export TMP_DIRECTORY=[name of the temporary directory]

export SRC_DIR=[path to the Perl scripts]

export DB_NAME=[name of mysql database]

export DB_USER=[username for mysql database]

export DB_PASSWD=[password for mysql database]

export REQ_HEAD_BYTES=[number of bytes in the REQ header]

export LOCK_FILE=[name of lock file to check for]

export CURRENT_LASER=[name of active laser campaign]

export SAVED_DIST_DIR=[name of directory containing saved distribution data]
export CHECK_FULL_PID_FLAG =[flag to indicate if check_full_pid.tcl is called (0/1)]

6.3 Main script to process subscriptions: process_subs.tcl

Synopsis:
The CREATION database table is accessed to see if subscriptions need be fulfilled on a batch of
files. If yes, then the subscriptions software is invoked.

Assumptions:
- Files are processed in batches per PID per product.
- Two file batches can be processed at the same time.

Error Handling:

The script terminates when an error occurs. The error information from all the calling routines is
saved in errorInfo and is written into the log file.

- Can’t open or connect to the database

- Error from an external procedure.

- Error from a subroutine.

Last updated: 5/8/2012 Page 69 Version 201205.0



Description of Algorithm:
Refer to Appendix B.3: Flowchart for subscription.tcl

Output Files:
- Subsetted datasets including GLA, BN, GR, PS, UR, and possible browse files along with a
PDR file for data transfer.

Subroutines called:

- create_binrev.tcl — Refer to section 5.3.1 for more information

- create_geo.tcl — Refer to section 5.3.2 for more information

- create_pass_files.tcl — Refer to section 5.3.3 for more information
- create_unique_files.tcl — Refer to section 5.3.4 for more information
- find_track.tcl — Refer to section 5.3.5 for more information

- create_pdr.tcl

- lsearch_all.tcl

- run_ds_pc.tcl

- sub_error.tcl

- check_full_pid.tcl

6.3.1create_pdr.tcl

Creates the PDR input file and runs create_pdr.pl, which creates the PDR for the input list of
files. Refer to section 6.3 for information on create_pdr.pl.

Input Arguments:
- Output directory
- File list

- Distribution ID
- Request ID

Output Arguments:
- None

Global Variables Used:
- errorinfo

- perl_path

- log_directory

Output Files:
PDR and XFR

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

Last updated: 5/8/2012 Page 70 Version 201205.0



- Error from an external procedure.
- Error opening input file

Routines Called:
- create_pdr.pl - Refer to section 6.3 for more information

6.3.21search_all.tcl

Returns list of all list entries that match Isearch pattern.

Input Arguments:
- Input list
- Pattern

Output Arguments:
- Output list

Global Variables Used:
- None

Output Files:
- None

Error Handling:
- None

Routines Called:
- None

6.3.3run_ds_pc.tcl

Creates control files and runs data_select, parse_req, and prod_create.

Input Arguments:

- Tmp directory

- Input file for data_select containing list of BN and UR files (File must already exist)
- Control file name for data_select (just the name, the file will be created)

- Output string for data_select output files containing request ID, product set ID and version
- Track file for rewrite_req containing requested tracks (File must already exist)

- Control file name for prod_create (just the name, the file will be created)

- Control file name for parse_req (just the name, the file will be created)

- Data path for data_select

- Data path for prod_create

- Flag indicating if prod_create should be run (0=no, 1=yes)

Last updated: 5/8/2012 Page 71 Version 201205.0



Output Arguments:
- List of subsetted product files from prod_create. If prod_create is not run, “” is returned.

Global Variables Used:
- errorinfo

- bin_path

- rev_file

- anc70_file

- startJ2000

- endJ2000

- maxLat

- minLat

- maxLon

- minLon

- ds_prod_list

Output Files:
- REQ files in tmp directory from data_select. The format for the REQ file is in Appendix C.
- Subsetted product files from prod_create

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error from an external procedure.

- Error from a subroutine.

Routines Called:

- write_ds_ctrl.tcl

- write_pr_ctrl.tcl

- write_pc_ctrl.tcl

- data_select.f90 - Refer to section 4.1.6 for more information

- rewrite_req.f90 - Refer to section 4.1.6.18 for more information
- prod_create.f90 - Refer to section 4.1.10 for more information

6.3.3.1.write_ds_ctrl.tcl

Creates the control file for the data_select software.

Input Arguments:

- Control file name

- Input file name containing list of BN and UR files

- Output string for data_select output files containing request ID, product set ID and version
- Date_str for data select output file. If it is null,the start date will replace it.

- Tmp directory

Last updated: 5/8/2012 Page 72 Version 201205.0



- Data path

Output Arguments:
- None

Global Variables Used:
- bin_path

- rev_file

- anc70 _file

- startJ2000

- endJ2000

- maxLat

- minLat

- maxLon

- minLon

- ds_prod_list

Output Files:
- Control file for data_select

Error Handling:

- Returns the error number to the calling script
- Error from an external procedure.

- Error opening the control file

Routines Called:
- None

6.3.3.2.write_pr_ctrl.tcl

Creates the control file for the parse_req software.

Input Arguments:

- Control file name

- Tmp directory

- List of created REQ files
- Data path

Output Arguments:
- None

Global Variables Used:
- anc70_file

Output Files:
- Control file for prod_create

Last updated: 5/8/2012 Page 73

Version 201205.0



Error Handling:

- Returns the error number to the calling script
- Error from an external procedure.

- Error opening the control file

Routines Called:
- None

6.3.3.3.write_ps_ctrl.tcl

Creates the control file for the prod_create software.

Input Arguments:

- Control file name

- Tmp directory

- List of created REQ files
- Data path

Output Arguments:
- None

Global Variables Used:
- anc70 _file

Output Files:
- Control file for prod_create

Error Handling:

- Returns the error number to the calling script
- Error from an external procedure.

- Error opening the control file

Routines Called:
- None

6.3.4sub_error.tcl
Changes pending subscriptions to "B" in CREATION table.

Input Arguments:
- Process number (P1 or P2)

Output Arguments:
- None.

Last updated: 5/8/2012 Page 74 Version 201205.0



Global Variables Used:
- errorinfo

- bin_path

- conn

Output Files:
- None

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

- Error from failed database action.

Routines Called:

- None

6.3.5check_full_pid.tcl

Checks that input file list has complete number of files for PID.

Input Arguments:
- filelist

Output Arguments:
- PID full flag (0/1)

Global Variables Used:
- errorinfo
- bin_path

Output Files:
- None

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into a log file and will
terminate.

Routines Called:
- None

Last updated: 5/8/2012 Page 75 Version 201205.0



7 Energy Analysis

7.1 Invocation

Energy analysis is invoked with the script /SCF/bin/ops/run_process_ea.ksh This script defines
environment variables needed to run the energy analysis software and creates an error file that is
sent to SCF personnel via email upon error.

7.2 Environment Definitions

export ISIPS_PATH=[location of I-SIPS files before processing]

export ICESATVIS_TMP=[location for temporary directories]

export DB_NAME=[name of mysql database]

export DB_USER=[username for mysql database]

export DB_PASSWD=[password for mysql database]

export WEB_EA_DIR=[name of directory on glas-scfweb for energy analysis files]
export WEB_WF_DIR=[name of directory on glas-scfweb for waveform analysis files]
export EA_DIR=[name of directory containing energy analysis code]

7.3 Main script to run energy analysis: process_ea.tcl

Synopsis:
The CREATION database table is accessed to see if energy analysis needs be performed on a
batch of GLAOL1 files. If yes, then the energy analysis software is invoked.

Assumptions:

- Only GLAOL1 files are processed.

- Files are processed in batches per PID.
- File batches are processed one at a time.

Error Handling:

The script terminates when an error occurs. The error information from all the calling routines is
saved in errorinfo and is written into the log file.

- Can’t open or connect to the database

- Error from an external procedure.

- Error from a subroutine.

Description of Algorithm:
Refer to Appendix B.3: Flowchart for subscription.tcl

Output Files:
- Png files for display on the SCF website.

Subroutines called:
- write_ea_ctrl.tcl

Last updated: 5/8/2012 Page 76 Version 201205.0



7.3.1write_ea_ctrl.tcl

This routine writes the control file for the energy and waveform analysis software and runs it.
Copies resultant png and html files to glas-scfweb.

Assumptions:
- File names in GLAO1 list must include full path

Input Arguments:

- Control file

- Output directory

- Directory on web host for energy analysis web output

- Directory on web host for waveform analysis web output
- List of GLAOL1 files

- Laser campaign

- Reference orbit

Output Arguments:
- Control file for scfplot.pro

Global Variables Used:
- errorinfo

- bin_path

- ea_dir

Output Files:
- None

Error Handling:

- Returns the error number to the calling script
- Error opening control file

- Error from an external procedure

Routines Called:

- run_ea.ksh

- ps_to_png.ksh
- scp_file_web.ksh

7.3.1.1.run_ea.ksh

Script to run scfplots.pro. Converts resultant data files to html files.

Assumptions:

Last updated: 5/8/2012 Page 77 Version 201205.0



- None

Input Arguments:

- Control file name

- Energy analysis plot flag

- Waveform analysis plot flag

- Energy analysis text file name

- Energy analysis HTML file name

- Waveform analysis text file name

- Waveform analysis HTML file prefix

Output Arguments:
- None

Global Variables Used:
- Uses scf_environ.ksh

Output Files:
- None

Error Handling:
- None

Routines Called:

- /SCF/IDL/EnergyAnalysis/ops/scfplots.pro

- /SCF/IDL/EnergyAnalysis/ops/energy_analysis2html.pro
- /SCF/IDL/EnergyAnalysis/ops/wf_analysis2html.pro

7.3.1.1.1. scfplots.pro

Creates energy and waveform analysis plots based on GLAO1. Outputs data files then creates
plots output to png files.

Input Arguments:
- Control file name

Output Files:

- energy_analysis.txt

- energy_analysis.ps

- wf_log.txt

- wifdailystats.txt

- wf_plots.dat

- wf_plots_1.ps to wf_plots_5.ps

Routines Called:

Last updated: 5/8/2012 Page 78 Version 201205.0



- Several in /SCF/IDL/EnergyAnalysis/ops

7.3.1.1.2. energy_analysis2html.pro

Converts energy analysis data file to html file.

Input Arguments:
- Input text file name
- Output HTML file name

Output Files:
- energy_analysis_table.html

Routines Called:

- None

7.3.1.1.3. wf_analysis2html.pro

Converts waveform analysis data file to html files.

Input Arguments:
- Input text file name
- Output HTML file name

Output Files:

- wf_analysis. COMBINED.html
- wf_analysis_ICESHEET.html

- wf _analysis_ LAND.html

- wf _analysis_ OCEAN.html

- wf_analysis_ SEAICE.html

Routines Called:
- None

7.3.1.2.ps_to_png.ksh

Converts a postscript file to PNG file using image_convert. This file is in
/SCF/IDL/EnergyAnalysis/ops.

Assumptions:
- Rotates the image 270 degrees

Input Arguments:

Last updated: 5/8/2012 Page 79 Version 201205.0



- PSfile name
- PNG file name

Output Arguments:
- None

Global Variables Used:
- None

Output Files:
- PNGfile

Error Handling:
- None

Routines Called:

- None

7.3.1.3.scp_file_web.ksh

Scp a file to glas-scfweb web site.

Assumptions:
- None

Input Arguments:

- Input directory on icesatO

- Output directory on glas-scfweb
- File name to transfer

Output Arguments:
- None

Global Variables Used:
- None

Output Files:
- None

Error Handling:
- None

Routines Called:
- None

Last updated: 5/8/2012 Page 80

Version 201205.0



8 Data Distribution

The data distribution procedure is invoked by the special request script.

call
parameters_for_pdr.tcl

v

run invoke_perl.ksh

v

run create_pdr.pl

output:
errors.xt

output:
errors.txt

N
PDR file
exist?

N

output:
errors.txt

XFR file
exist?
N

move all the product sets, the pdr
and the xfr file and log file
to the distribution directory

output:
errors.txt

T
Any Errors?
N

Fig 6.1

Last updated: 5/8/2012 Page 81

Version 201205.0



8.1 parameters_for_pdr.tcl

It prepares the control file that runs invoke_perl.ksh .

output file:
ctrl_pdr.dat
It is a text file that consist of keywords with the parameters needed for creating the PDR files.

Example of a control file:

REQUEST_ID =r_582;

TOTAL_FILE_COUNT =3;

SUBDIR = /SCF/product_sets/logs;

DATA_TYPE = GLAO5;

DATA_VERSION =0;

FILE_ID =tzipi_Feb27 13:43:06_information.log;
FILE_TYPE = LOG;

SUBDIR = /SCF/product_sets/\VV2_inttest;
DATA_TYPE = GLAOG6;

DATA_VERSION =0;

FILE_ID = GLA06_00010112_r_582.268_00;
FILE_TYPE = SCIENCE;

FILE_ID = BNA06_00010112_r_582.268_00;
FILE_TYPE = ANCILLARY;

More detailed information can be found in the SCF Interface Software Detailed Design
Document.

Error Handling:

The script return an error number that is not zero to the calling script. The error message is
written to the global variable errorinfo.

- Can’topenafile

- No bin directory was created

- No product file was created

- Can’t delete the REQ files

Description of Algorithm:

- Open the control file

- Find the number of files to deliver and write it in the control file
- Write the rest of the parameters into the control file

- Delete the REQ files from the directory

Calling Subroutines:
None.

Last updated: 5/8/2012 Page 82 Version 201205.0



8.2 invoke_perl.ksh

Defines the environment variables for the perl script and runs create_pdr.pl.

8.3 create_pdr.pl

This program reads a list of file names and creates a PDR file. It also creates an XFR file
denoting the completion of the PDR file.

The format of the input file is keyword = value.

More detailed information can be found in the SCF Interface Software Detailed Design
Document.

output files:
PDR and XFR files.

The format and contents of the following files is in the SCF Interface Software Detailed Design
Document.

Example of PDR file:
PDR_TYPE = DISTRIBUTION;
ORIGINATING_SYSTEM = MSCF;
REQUEST_ID =r_583;
TOTAL_FILE_COUNT = 3;
TIME_STAMP = 2002-02-27T18:46:57Z,;
OBJECT = FILE_GROUP;
SUBDIR = /SCF/product_sets/logs;
DATA_TYPE = GLAOS5;
DATA_VERSION = 0;
NODE_NAME = icesat0.gsfc.nasa.gov;
OBJECT = FILE_SPEC;
DIRECTORY_ID = /SCF/tmp/dir ALT_25214;
FILE_ID =tzipi_Feb27 13:46:55_information.log;
FILE_TYPE = LOG;
FILE_SIZE = 313;
FILE_CHKSUM = 3636182780;
END_OBJECT = FILE_SPEC;
END_OBJECT = FILE_GROUP;
OBJECT = FILE_GROUP;
SUBDIR = /SCF/product_sets/\VV2_inttest;
DATA_TYPE = GLAO6;
DATA_VERSION =0;
NODE_NAME = icesat0.gsfc.nasa.gov;
OBJECT = FILE_SPEC,;
DIRECTORY_ID = /SCF/tmp/dir_ ALT_25214;

Last updated: 5/8/2012 Page 83 Version 201205.0



FILE_ID = GLA06_00010112_0583.P0269_00;
FILE_TYPE = SCIENCE;
FILE_SIZE = 864960;
FILE_CHKSUM = 2478905258;

END_OBJECT = FILE_SPEC;

OBJECT = FILE_SPEC;
DIRECTORY _ID = /SCF/tmp/dir ALT _25214;
FILE_ID = BNA06_00010112_0583.P0269_00;
FILE_TYPE = ANCILLARY;
FILE_SIZE = 384;
FILE_CHKSUM = 312849633;

END_OBJECT = FILE_SPEC;

END_OBJECT = FILE_GROUP;

Example of XFR file:
Done writing /SCF/tmp/dir_ALT_25214/MSCF.r_583.PDR

Error Handling:
The script return an error number that is not zero to the calling script. The error message is

written to the global variable errorinfo.
- Can’topenafile
- Can’tcreate afile.

Last updated: 5/8/2012 Page 84 Version 201205.0



9 Submitting Product QA Updates to the I-SIPS

9.1 Invocation

The submit_ga.tcl script is run by run_submit_ga.ksh.

9.2 Input Arguments

The following input arguments are required to run submit_ga.tcl:

QAID=$1 QA update ID from database
CCB_ACCEPT=$%2 CCB decision to accept QA update: Y (yes), N (no)

9.3 Environment Definitions

The following environmental variables are required to run submit_ga.tcl:

export ICESATVIS_BIN=[location of the executable and script files]
export ISIPS_DIST =[location of I-SIPS distribution cache]

export DB_NAME=[name of mysql database]

export DB_USER=[username for mysql database]

export DB_PASSWD=[password for mysql database]

export LOCAL_NAME-=[local host name]

export QAID =[input argument 1]

export CCB_ACCEPT =[input argument 2]

9.4 submit_ga.tcl

Synopsis:
Submits product QA update to I-SIPS and updates database.

Assumptions:
- None

Output File:
- QA Update Form (QAUF) and XFR via create_quaf.tcl

Error Handling:

The script terminates when an error occurs.

- Can’t open or connect to the database

- Error from a subroutine.

- If the input arguments are not valid, the script exits with a usage statement.

Subroutines called:
- create_quaf.tcl

Last updated: 5/8/2012 Page 85 Version 201205.0



9.4.1create_qauf.tcl

Creates a QA Update Form (QAUF) for I-SIPS.

Input Arguments:

- Output directory

- QA update ID

- Product

- Release

- Start date of data

- End date of data

- QA update (passed, failed, inferred_passed)

Output Arguments:
- QAUF file name

Global Variables Used:
- errorinfo
- local _name

Output File:
- QA Update Form (QAUF) and XFR

Example of a QA Update Form:
ORIGINATING_SYSTEM = MSCF;

QA _UPDATE_ID = 1;

TIME_STAMP = 2002-10-30T16:51:127;

PRODUCT
RELEASE
START_DATE = 63115200;
END DATE = 92664000;
QA _UPDATE = Passed;

glal6;
2.2;

Error Handling:

- Returns the error number to the calling script

- The error message goes to errorinfo and the main script will write it into the database and
will terminate.

- Error opening the QAUF.

- Error touching the XFR

Subroutines called:
- None

Last updated: 5/8/2012 Page 86 Version 201205.0



10 Monitoring

There are several scripts that monitor the processing status and health of the system. They are
run automatically at set time intervals via cron jobs and email SCF personnel if certain criteria
are met. They include:

- check_dist.tcl

- check_ingest.tcl
- check_ps.tcl

- check_ps_rscf.tcl

10.1check_dist.tcl

Synopsis:
Checks the directories in a list for files greater than the threshold number of hours. If a file is
found an email is sent to SCF personnel. Excludes subdirectories in the directory.

Invocation:
The check_dist.tcl script is run by run_check_dist.ksh on the main SCF (icesat0).
The check_dist.tcl script is run by run_check_dist_rscf.ksh on the remote SCF’s.

Environment Definitions:

export ICESATVIS_BIN=[location of the executable and script files]

export ICESATVIS_TMP =[location of temporary directory for cron log file]
export DIR_LIST =[list of directories to be checked separated by at least one space]
export OLD_HOURS =[threshold number of hours]

export PROC_FILE=[name of processing file to check for]

export PULL_FILE=[name of pull file to check for]

export PUSH_FILE=[name of push file to check for]

Subroutines called:
- send_mail_mscf.pl - Refer to section 3.1.14 for details

10.2check_ps.tcl

Synopsis:

Checks the number of “scf” processes currently running. If the number of processes is greater
than the threshold number an email is sent to SCF personnel. Also added disk space check. If
certain disks are more than x percent full an email is sent to SCF personnel

Invocation:
The check_ps.tcl script is run by run_check_ps.ksh.

Environment Definitions:

Last updated: 5/8/2012 Page 87 Version 201205.0



export ICESATVIS_BIN=[location of the executable and script files]

export ICESATVIS_TMP =[location of temporary directory for cron log file]
export MAX_NUM_PROC =[threshold number of processes]

export DIR_LIST=[list of directories]

export MAX_PCT_FULL=[threshold percentage]

Subroutines called:
- send_mail_mscf.pl - Refer to section 3.1.14 for details

10.3check_ps_rscf.tcl
Synopsis:

Checks the number of “scf” processes currently running on rSCF’s. If the number of processes
is greater than the threshold number an email is sent to SCF personnel. Also added disk space
check. If certain disks on rSCF’s are more than x percent full an email is sent to SCF personnel.
Also if full, a lock file is put in distribution cache.

Invocation:
The check_ps_rscf.tcl script is run by run_check_ps_rscf.ksh.

Environment Definitions:

export ICESATVIS_BIN=[location of the executable and script files]

export ICESATVIS_TMP =[location of temporary directory for cron log file]
export MAX_NUM_PROC =[threshold number of processes]

export SSH_DIR=[location of the secure shell executables]

export DIR_LIST=[list of directories]

export MAX_PCT_FULL=[threshold percentage]

export LOCK_FILE=[name of lock file]

export rscf names=[rscf host names]

Subroutines called:

- send_mail_mscf.pl - Refer to section 3.1.14 for details
- ssh_rscfs.tcl

- mv_saved_files.tcl

10.4.1 ssh_rscfs.tcl

Sets a ssh login on each rSCF and performs command. Just returns site if command is
Input Arguments:

- site host name

- command

Output Arguments:

Last updated: 5/8/2012 Page 88 Version 201205.0



- answer from command (list)

Global Variables Used:
- errorinfo

- bin_path

- ssh_dir

Subroutines called:
- None

Comments:
- Always returns 0
- Sometimes the answer contains the results from the command plus messages from the ssh.

10.4.2 mv_saved_files.tcl

Moves files from saved_dist_dir to site's dist dir.

Input Arguments:
- site abbreviation

Output Arguments:
- none

Global Variables Used:
- errorinfo

- bin_path

- db_name

- db_user

- db_passwd

- saved_dist_dir

- dist_dir

- lock_file

Subroutines called:
- None

Last updated: 5/8/2012 Page 89 Version 201205.0



11 Gap Checks

There are several scripts that are run manually after processing data to make sure that all files
were ingested and processed. They include:

- check_pending_subs.tcl
- check_pending_ea.tcl
- file_gap.tcl

There is one script that can be run manually during processing data to check on subscription and
energy analysis processing status. It is:

- check_subs_ea.tcl

11.1check_pending_subs.tcl

Synopsis:
Checks for bad, pending, or waiting subscriptions in database and sets them to “N” or “NF”
based on input argument.

Invocation:

This script is run by test_check _pending_subs.ksh.

Call with no input arguements to change P1, P2, P3, P4 and B to N

Call with input arguements 1, 2, 3, or 4 to change P1, P2, P3, or P4to N
Call with input arguements 6, 7 to change W to N or to NF

Environment Definitions:

export ICESATVIS_BIN=[location of the executable and script files]
export DB_NAME=[mysql database name]

export DB_USER=[mysql database user name]

export DB_PASSWD= [mysgl database password]

Subroutines called:
- None

11.2check_pending_ea.tcl

Synopsis:
Checks for pending energy analysis runs in database and sets them to "N"

Invocation:
This script is run by test_check pending_ea.ksh.

Environment Definitions:
export ICESATVIS_BIN=[location of the executable and script files]

Last updated: 5/8/2012 Page 90 Version 201205.0



export DB_NAME=[mysql database name]
export DB_USER=[mysql database user name]
export DB_PASSWD= [mysgl database password]

Subroutines called:
- None

11.3file_gap.tcl

Synopsis:
Checks for gaps in products in a directory

Invocation:
This script is run by run_file_gap.ksh.

Environment Definitions:

export ICESAT_PRODUCT_SET=[location of data products]

export ICESATVIS_BIN=[location of the executable and script files]
export DB_NAME=[mysql database name]

export DB_USER=[mysql database user name]

export DB_PASSWD= [mysgl database password]

Subroutines called:

- zero_out.tcl - Refer to section 3.3.5 for details

- find_track.tcl - Refer to section 5.3.5 for details

- send_mail_mscf.pl - Refer to section 3.1.14 for details
- check_laser_op.tcl

- get_file_times.tcl

11.2.1 check_laser_op.tcl

Synopsis:
Checks for gaps in products in a directory

Input Arguments:
- laser

Output Arguments:
- refid_list

- start_cycle_list

- start_track_list

- start_date_list

- start_time_list

- end_cycle_list

- end_track_list

- end_date_list

Last updated: 5/8/2012 Page 91

Version 201205.0



- end_time_list

Global Variables Used:
- bin_path

Subroutines called:
- None

11.2.2 get_file_times.tcl

Synopsis:
Gets starting/ending dates/times for product file (reads headers)

Input Arguments:
- input_file

Output Arguments:
- start_date

- start_time

- end_date

- end_time

Global Variables Used:
- errorinfo
- bin_path

Subroutines called:

- read_keyword - Refer to section 2.3.5.17 for details
- read_header_val.f90 - Refer to section 4.1.26.1 for details

11.4check_subs_ea.tcl

Synopsis:
Checks subscriptions and energy analysis status in database for input laser period

Invocation:
This script is run by test_check subs_ea.ksh

Input Arguments:
- in_laser

Environment Definitions:

export ICESATVIS_BIN=[location of the executable and script files]
export DB_NAME=[mysql database name]

Last updated: 5/8/2012 Page 92 Version 201205.0



export DB_USER=[mysql database user name]
export DB_PASSWD= [mysql database password]

Last updated: 5/8/2012 Page 93 Version 201205.0



12 Clean-up

There are several scripts that monitor the processing status and health of the system. They are
run automatically at set time intervals via cron jobs and email SCF personnel if certain criteria
are met.

12.1daily_cleanup.tcl

Synopsis:

Checks product files in the data directory and subdirectories beginning with “L” to see if they
should be used or not based on the INSTRUMENT_UPDATES table (i.e. is the laser on). If not,
then moves files to a "deleted files" directory along with associated UR and PS files and emails
SCF personnel. Also checks if a newer version of the file exists. If so then the file is moved to a
"deleted files" directory. Also reads a “deleted files” file to check if browse and QAP files need
to be moved to the "deleted files" directory as well/

Invocation:
The daily_cleanup.tcl script is run by run_daily_cleanup.ksh.

Environment Definitions:

export ICESATVIS_BIN=[location of the executable and script files]

export ICESATVIS_TMP =[location of temporary directory for cron log file]
export DATA_PATH=[location of data files and/or subdirectories with data files]
export BROWSE_PATH=[location of browse files]

export QAP_PATH=[location of QAP files]

export DELETED_DATA_PATH=[location of “deleted” files]

export DEL_FILE=[name of file containing deleted file names]

export DB_NAME=[mysql database name]

export DB_USER=[mysql database user name]

export DB_PASSWD= [mysql database password]

export PROC1=[loop over previous data path (1=yes/0=no)]

export PROC2=[loop over current data path (1=yes/0=no)]

export PROC3=[loop over deleted_files file (1=yes/0=no)]

export ACCESS_DAYS=[check directory if it has been accessed within this many days]

Subroutines called:

- send_mail_mscf.pl - Refer to section 3.1.14 for details
- get_file_j2000.tcl

- check_inst_update.tcl

12.1.2 get_file_j2000.tcl

Gets starting/ending times in J2000 seconds for product file (reads headers).

Last updated: 5/8/2012 Page 94 Version 201205.0



Assumptions:
Start and end dates/times are within first 500 header lines

Input Arguments:
- Product file

Output Arguments:
- Starting J2000 seconds
- Ending J2000 seconds

Global Variables Used:
- errorinfo
- bin_path

Error Handling:

- Returns 2 if starting/ending J2000 seconds not found

- Errors if the following keywords are not in file header: RangeBeginningDate,
RangeBeginningTime, RangeEndingDate, RangeEndingTime

Subroutines called:
- read_header_val.f90 - Refer to section 4.1.26.1 for details

12.1.3 get_pid_j2000.tcl

Gets starting/ending times in J2000 seconds from reflD, cycle, track, and segment using rev file.

Assumptions:
- Arrev is 5800 secs, a quarter rev is 1450 secs

Input Arguments:

- Reference orbit ID (prkk)
- Cycle (3 digit)

- Track (4 digit)

- Segment

- Revfile

Output Arguments:

- Starting J2000 seconds
- Ending J2000 seconds
Global Variables Used:

- errorinfo

- bin_path

Error Handling:

Last updated: 5/8/2012 Page 95 Version 201205.0



- Returns 2 if starting/ending J2000 seconds not found

12.1.4 check_inst_update.tcl

Compares input time in J2000 seconds against INSTRUMENT_UPDATES table and returns flag
indicating whether to use the data (Y/N). Returns -2 if use_flag could not be found, 0 if found.

Assumptions:
- Default is use_flag=N if data end time before table start time
- If use_flag=Y for any part of time span, then use_flag=Y

Input Arguments:
- Start time in J2000 seconds
- End time in J2000 seconds

Output Arguments:
- Data use flag

Global Variables Used:
- errorinfo

- bin_path

- db_name

- db_user

- db_passwd

Error Handling:
- Returns error if problem accessing database

Last updated: 5/8/2012 Page 96 Version 201205.0



13 Instrument Updates

Instrument updates are sent by email to the scfistat account. Every new email that arrives will
trigger the execution of the readlStatMail.ksh script that will parse the information parameters
and insert them to the mysgl database tables.

The readlStatMail.ksh script is triggered every time a new mail is received in the scfistat account
because the full path name of the script is in the /etc/mail/forwards/scfistat.forward file.

13.1Invocation and environment

The readlStatMail.ksh script automatically executes whenever a new email is received in the
scfistat account. This script defines all the environment variables needed to process the email
and executes the mail parsing script.

13.2Environment Definitions

export PATH="cat /etc/PATH :3PATH [Include the /etc/ directory to the path]

export ICESATVIS_TMP= [temporary directory]

export MAIL_FILE= ICESATVIS_TMP/mail.txt [mail file]

export ICESATVIS_BIN= [location of the executable program and scripts]
export TMP_DIRECTORY=$ICESATVIS_TMP/dir_3$$ [the working directory]

export STATION_PATH= [path to TOO station files]

export LOCAL_NAME= [mscf or rscf]

export DB_NAME= [mysql database name]

export DB_USER= [mysql database user name]

export export DB_PASSWD= [mysql database password]

13.3parse_istat_mail.tcl

This script parses the instrument update email, writes the parameters into a file and into the
mysql database tables.

Input parameters:
Original email — from stdin

Output files:
Text file that the mail parameters are written to.

Error Handling: The script terminates when an error occurs. The error information from all the
calling routines is saved in errorinfo and will be written into the log file.

- Can’t open afile

- Can’t parse the file — not in expected format

- Can’t populate the mysql database table

Last updated: 5/8/2012 Page 97 Version 201205.0



Description of Script:
- This script parses instrument update email sent to the scfistat account and populates either the
TOO_UPDATE, RTSCM_UPDATE, or RTSCM_POINTING database table.

- The email can be a TOO update, a real-time, saved command (RTSCM) update, or an
RTSCM pointing command.

- If the email contains TOO information, a station file is created for TOO’s on the same day.
- This code processes only one email at a time - the mail is in the stdin

Subroutines called:
- update_error_table.tcl

Last updated: 5/8/2012 Page 98 Version 201205.0



14 1-SIPS Distribution Monitoring

The I-SIPS creates a report from its Oracle database listing the product files completed by the I-
SIPS that day. These I-SIPS distribution reports are sent by email to the scfstat account. Every
new email that arrives triggers the execution of the readStatMail.ksh script that parses the
information parameters, writes the parameters into a file, and checks to see if the files listed exist
in the mSCF directories. Any files that are not found on the mSCF are listed in an email that is
sent to mSCF personnel.

The readStatMail.ksh script is triggered every time a new mail is received in the scfstat account
because the full path name of the script is in the /etc/mail/forwards/scfstat.forward file.

14.1Invocation and environment

The readStatMail.ksh script automatically executes whenever a new email is received in the
scfstat account. This script defines all the environment variables needed to process the email and
executes the mail parsing script.

14.2Environment Definitions

export PATH="cat /etc/PATH :3PATH [Include the /etc/ directory to the path]

export ICESATVIS_TMP= [temporary directory]

export ICESATVIS_BIN= [location of the executable program and scripts]
export TMP_DIRECTORY=$ICESATVIS_TMP/dir_3$$ [the working directory]

export DIR_LIST =[list of directories to be checked separated by at least one space]

export LOCAL_NAME= [mscf or rscf]

export DB_NAME= [mysql database name]
export DB_USER= [mysql database user name]
export export DB_PASSWD= [mysql database password]

14.3parse_stat_mail.tcl

This script parses the I-SIPS distribution email, writes the parameters into a file and checks to
see if the files exist in the mSCF directories listed in an environmental variable. Any files that
are not found on the mSCF are listed in an email that is sent to mSCF personnel.

Input parameters:
Original email — from stdin

Output files:
Text file that the mail parameters are written to.

Error Handling: The script terminates when an error occurs. The error information from all the

calling routines is saved in errorinfo and will be written into the log file.
- Can’t open mail file

Last updated: 5/8/2012 Page 99 Version 201205.0



- Can’t parse mail file — not in expected format
- Can’t open the Mysql database
- Can’t send email

Description of Script:

- This script parses I-SIPS distribution email sent to the scfstat account
- The email can be an Oracle I-SIPS distribution email

- This code processes only one email at a time - the mail is in the stdin

Subroutines called:
- update_error_table.tcl

Last updated: 5/8/2012 Page 100 Version 201205.0



15 Daily Statistics Report

15.1Invocation and environment

The stat_report.tcl script is run by run_stat_report.ksh. It is run by a cron job once per day.

15.2Environment Definitions

export ICESATVIS_TMP= [temporary directory]

export ICESATVIS_BIN= [location of the executable program and scripts]

export SIG_BLOCK-= [location of the signature block file with SCF manager contact
information]

export DB_NAME-= [mysql database name]

export DB_USER= [mysql database user name]

export DB_PASSWD= [mysgl database password]

export CURRENT _LASER=[name of active laser campaign]

15.3Stat_report.tcl

This script writes a daily statistics report and emails it to SCF personnel. It calculates the
number of hours of data processed from 4 pm yesterday to 4 pm today. If today is Monday,
creates a report for the last 3 days. Does not create reports for Saturday and Sunday.

Input parameters:
- None

Output files:
- Report file

Error Handling: The script terminates when an error occurs. The error information from all the
calling routines is saved in errorinfo and will be written into the log file.

- Can’t open the Mysql database

- Can’t open report file

- Can’t send email

Subroutines called:
- update_error_table.tcl

- send_mail_report.pl
- get_data_directory.tcl: Refer to section 5.3.13.1 for details

15.3.1 send_mail_report.pl

Synopsis:
Sends email to recipients of SCF status report.

Last updated: 5/8/2012 Page 101 Version 201205.0



Invocation:
send_mail_report.pl <file_with_message> <subject_line>

Last updated: 5/8/2012 Page 102 Version 201205.0



Appendix A - Mysql Database Tables

The mysql database tables are designed to track of the user’s data request and distribution. The
tables are on the mSCF system.

User- Information

e User number — assigned by mSCF

e User name

e Institute name

e User contact info — email, phone, fax, address

Subscription and Special Request input parameters

e Time/pass span

Region latitude and longitude limits

User number associated with the request

Which GLAS standard data products are requested

Distribution Information

e Special request or subscription unique 1D

e PID span of the main SCF product sets used to fill the request (For subscriptions this will
only be one number, for special requests several main SCF product sets could be used)
Date and time request filled

Time span of the data sent

Name and size of each file sent (include output product set ID, PID)

Names of I-SIPS files that went into each request file.

Instrument Information

e Dates and times of important events and maneuvers with use flag to indicate if data should be
used or not

Real-time and saved instrument commands

Target of Opportunity updates

Dates of when the laser is operational

Dates of when the laser is off

Tables list:

e USER

e SPECIAL REQUEST USER
SUBSCRIPTION_USER
ISIPS_PRODUCT _ID
REQUEST_PRODUCT_SEG
REQUEST_TRACKS
REQUEST _CYCLES
ISIPS_SUBSCRIPTIONS
CREATION

Last updated: 5/8/2012 Page 103 Version 201205.0



SUBSCRIPTION_INPUT_FILES1
SUBSCRIPTION_INPUT_FILES?
DISTRIBUTION
DISTRIBUTION_FILES
SPECIAL_REQUEST PID
[FSCF]_PRODUCT_ID
QA_PRODUCT UPDATE
TOO_UPDATE

INSTRUMENT _UPDATE
RTSCM_UPDATE
RTSCM_POINTING
SUBSCRIPTION_CYCLES
SUBSCRIPTION_TRACKS
SUBSCRIPTION_PRODUCT SEG
REQUEST INPUT _FILES

The software to create these tables is in /SCF/tables or use Navicat.

Last updated: 5/8/2012 Page 104 Version 201205.0



A.1 Table Name: USER

This table has the information of all the users that are allowed to request data from the mSCF or
the I-SIPS.

Example
userld userName institute email phone fax address
10 Johna ALT johna@xxx.gsfc.nasa.gov | NULL NULL NULL

Column Descriptions:

- userld: The assigned user ID of the person who submitted the request. Distinct userld is
based on userName and institute.

- userName: The user’s name

- institute: Site abbreviations for each rSCF as explained in the SCF Interface Software
Installation Guide.

- email: User’s email address (if submitted)

- phone: User’s telephone number (if submitted)

- fax: User’s fax number (if submitted)

- address: User’s mailing address (if submitted)

Column Properties

Field Type Null Key Default Extra

userld smallint (5) unsigned PRI auto_increment
userName varchar(20) YES NULL
Institute varchar(60) YES NULL
Email varchar(60) YES NULL
Phone varchar(20) YES NULL
Fax varchar(20) YES NULL
Address varchar(60) YES NULL

A.2 Table Name: SPECIAL_REQUEST_USER

This table contains the information for each special request.

Example
Rindx | requestld userld date startDate endDate StartJ2000 EndJ2000
1 r0001 10 2000-07-18 13:08:57 | 2001-06-05 10:00:00 2001-12-31 00:00:00 0 189388800

Table Continued

minLat maxLat minLon maxLon release | gl_flag | output_dir browse

-90 -53 -180 180 007 0 /SCF/product_sets/Smith N

Column Descriptions

Last updated: 5/8/2012 Page 105 Version 201205.0



- rindex: unique number that is assigned to every new special request

- requestld: unique ID to each request. The first letter stands for special request and the

number is a unique number, rindex.
- userld: The user ID of the person who sent the special request. The user ID must appear in
the USER table.

- date: The date the request was sent

- startDate, endDate: The beginning and end times of the data.

- startJ2000, endJ2000: The beginning and end times of the data in J2000 sec.

- minLat, maxLat, minLon, maxLon: the area to get the data from.
- release: Data release number
- gl_flag: Is this request quick-look? 0=no, 1=yes
- output_dir : The directory to put the product sets in

- browse: Are browse products requested? Y=yes, N=no (default)

Column Properties

Field Type Null | Key | Default Extra
rindex smallint(5) PRI | NULL | auto_increment
varchar(5)
requestld varchar(10) PRI
userld smallint (5) PRI 0
unsigned
date datetime 0000-
00-00
00:00:00
startDate datetime YES NULL
endDate datetime YES NULL
startJ2000 int(20) YES NULL
endJ2000 int(20) YES NULL
minLat float 0
maxLat float 0
minLon float 0
maxLon float 0
release int(3) YES NULL
ql_flag smallint(1) 0
unsigned
output_dir varchar(100) | YES NULL
browse Char(1) YES NULL

A.3 Table Name: SUBSCRIPTION_USER

This table contains the information for each subscription request

Example

Rindx | requestld

userld date

startDate

endDate

StartJ2000

EndJ2000

1 s0001

10 2000-07-18 13:08:57

2001-06-05 10:00:00

2001-12-31 00:00:00

0

189388800

Last updated: 5/8/2012

Page 106

Version 201205.0




Table Continued

minLat

maxLat

minLon

maxLon

ql_flag

output_dir

status browse

-90

-53

-180

180

/SCF/product_sets/Smith

A N

Column Descriptions

rindex: unique number that is assigned to every new subscription.

requestld: unique ID to each request. the first letter stands for subscription and the number is
a the unique number, rindex.

userld: The user ID of the person that sent the subscription. The user ID must appear in the
USER table.

date: The date the request was sent

startDate, endDate: The beginning and end times of the data.

StartJ2000, endJ2000: The beginning and end times of the data in J2000 sec.

minLat, maxLat, minLon, maxLon: the area to get the data from.

output_dir : The directory to put the product sets in

status: indicates whether the subscription is active (A) or not (N).

browse: Are browse products requested? Y=yes, N=no (default)

Column Properties

Field Type Null | Key | Default Extra
rindex smallint(5) PRI | NULL | auto_increment
varchar(5)
requestld varchar(10) PRI
userld smallint (5) PRI 0
unsigned
date datetime 0000-
00-00
00:00:00
startDate datetime YES NULL
endDate datetime YES NULL
startJ2000 int(20) YES NULL
endJ2000 int(20) YES NULL
minLat float 0
maxLat float 0
minLon float 0
maxLon float 0
ql_flag Smallint(1) 0
unsigned
output_dir varchar(100) | YES NULL
status Char(1) YES NULL
browse Char(1) YES NULL

A.4 Table Name: ISIPS_PRODUCT_ID

This table contains unique product ID and the passID parameters.

Last updated: 5/8/2012 Page 107 Version 201205.0



Example:

PID

refID

cyclelD

TracklD

beginningDate

20

1101

1

15

03022100

Column Descriptions:

- PID : unique number for the product

- reflD: the reference orbit ID

- cyclelD: the cycle number

- tracklD: the track number that is the beginning of 14 rev . (1,15,29, ect)

- beginningDate: the beginning date and time of the data in the yymmddhh format.
The beginningDate is taken from the header of the first GLAOL of the product set.

Column Properties

Field Type Null Key Default Extra
PID smallint(5) PRI NULL auto_increment
unsigned
reflD int(11) 0
cyclelD int(11) 0
tracklD int(11) 0
beginningDate | Varchar(8) | YES NULL

A5 Table Name: REQUEST_PRODUCT_SEG

This table contains a list of GLAS products for a special request ID

Example:
lindex requestld product
1 r0001 GLAO1
2 r0001 GLAO5
3 r0001 GLAO6

Column Descriptions:
- lindex: unique mysql record index

- requestld: unique special request ID
- product: requested product

Column Properties:

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(10)
product varchar(5)
Last updated: 5/8/2012 Page 108 Version 201205.0




A.6 Table Name: REQUEST_TRACKS

This table contains a list of tracks for a specific repeat cycle, for a special request ID.

Example
lindex requestld begin_track end_track | begin refTrack | end refTrack | refOrbitld
1 r0001 3 3 1 1 1
2 r0001 10 30 1 29 2

Column Descriptions
- lindex: unique mysql record index
- requestld: unique special request ID
- begin_track, end_track: tracks span
- begin refTrack, end refTRack: span of the reference track.
reference track is the beginning track of the 14 rev tracks.
- refOrbitld: 1 is for 8 days repeat cycles; 2 is for 91 days repeat cycles

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(10)
begin_track int(11) 0
end_track int(11) 0
begin refTrack int(11) 0
end refTrack int(11) 0
refOrbitld int(11) 0

A.7 Table Name: REQUEST_CYCLES

This table contains a list of cycles of a specific repeat cycle, for a special request ID.

Example
lindex requestld begin cycle end_cycle refOrbitld
1 r0001 1 1 1
2 r0001 3 3 1
3 r0001 2 2 2

Column Descriptions

- lindex: unique mysql record index

- requestld: unique special request 1D

- begin_cycle, end_cycle: Cycles span

- refOrbitld: 1 is for 8 day repeat cycle; 2 is for 91 day repeat cycle

Column Properties
Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment

Last updated: 5/8/2012 Page 109 Version 201205.0



requestld varchar(10)
begin_cycle int(11) 0
end_cycle int(11) 0
refOrbitld int(11) 0

A.8 Table Name: ISIPS_SUBSCRIPTIONS

This table gives a list of all available products and segments and indicates whether the mSCF has
an active subscription to the I-SIPS for the product and if it is stored at the mSCF.

Example:
lindex product segment store status
1 GLAO05 1 Y A
2 GLAO05 3 Y A
3 GLAO05 2 N N

Column Descriptions:
- lindex: unique mysql record index

- product: product

- segment: product segment

- store: indicates whether the product files are stored at the mSCF () or not (N).

- status: indicates whether the subscription to the I-SIPS is active (A) or not (N).

Column Properties

Field Type Null Key | Default Extra
lindex int(10) no PRI Auto_increment
product varchar(5)
segment int(11) YES NULL
store char(1)
status char(1)

A.9 Table Name: CREATION

This table lists the granules files from the I-SIPS.

This table is populated every time a new product set is sent by the I-SIPS to the mSCF.

Example
lindex ISIPS file data_dir PID
1 GLAO1 001 1101 003 0030 2 01 01.P0001 /SCF/product_sets/current/L1A 1
laser date data_start j2000 data_end j2000 subs_run ea_run
L1A 2002-02-28 10:34:18 140524988 150524988 N Y

Column Descriptions

- lindex: unique mysql record index
- ISIPS_file: the granule file from ISIPS after been renamed to the MSCF file convention.

Last updated: 5/8/2012

Page 110

Version 201205.0




- data_dir: directory where ISIPS file resides.
- PID: the product ID. The same as the one in table ISIPS_PRODUCT _ID.
- laser: laser campaign of ISIPS file.
- date: the date the I-SIPS file was copied to the mSCF
- data_start_j2000: the start date of the data in the I-SIPS file in J2000 secs
- data_end_j2000: the end date of the data in the I-SIPS file in J2000 secs

- subs_run: Subscription indicator: N (needs to be run), Y (has been run), D (don’t run), P (in

process), B (bad), W (waiting), NF (needs to be run — force)

- ea_run: Energy analysis indicator: N (needs to be run), Y (has been run), D (don’t run), P (in

process)

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
ISIPS file varchar(100)
data_dir varchar(100) Y
PID smallint(5) unsigned 0
laser char(3) Y
date datetime 0000-00-00
00:00:00
data_start j2000 int
data_end j2000 int
subs_run char(2) Y
ea_run char(1) Y

A.10 Table Name: SUBSCRIPTION_INPUT_FILES1

This table contains a list of I-SIPS files that were used to fulfill a subscription.

Example:
lindex | requestld inputProduct findex
1 50094 GLA10_019_2103_002_0351_0_01_0001.P0305 10

Column Descriptions:

- lindex: unique mysql record index

- requestld: subscription request ID

- Input Product: the I-SIPS file that went into the subscription output file
- findex: file index corresponding to subscription output file

Column Properties:

Field type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(5)
inputProduct varchar(100)
findex Int(10)

Last updated: 5/8/2012 Page 111 Version 201205.0



A.11 Table Name: SUBSCRIPTION_INPUT_FILES?2

This table contains a list of subscription output files for a subscription ID.

Example:
findex | requestld fileName date laser
10 50094 GLA10_03111407_s0094_L2_2103.P0305_01_02 1/27/2005 10:51:52 | L2A

Column Descriptions:

- findex: file index corresponding to subscription output file
- requestld: subscription request ID

- filename: name of subscription output file

- date: the date and time that the subscription was filled

- laser: the laser campaign

Column Properties:

Field type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(5)
Filename varchar(100)
date datetime 0000-00-00
00:00:00
laser Varchar(3)

A.12 Table Name: DISTRIBUTION

The table contains the relevant information related to the end of the data request processing

Example
lindex requestld beginPID | lastPID date
1 r0001 3 2001-07-23 12:38:31

Column Descriptions
- lindex: unique mysql record index
- requestld: request ID.

- beginPID, lastPID: process ID span of the mSCF product sets used to fill the request

- date: the date and time that the request was filled

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar (10) PRI
BeginPID | smallint(5) unsigned 0
LastPID smallint(5) unsigned 0
date datetime 0000-00-00
00:00:00

Last updated: 5/8/2012

Page 112

Version 201205.0




A.13 Table Name: DISTRIBUTION_FILES

This table contains the name and the size of each file sent after the process finished.

Example
lindex requestld filename fileSize date
1 r0001 GLAO02_1101_001_0030_0_01_01.P0003 213094464 2001-07-23 12:38:31
2 r0001 BNL_1101_001_0029.P0003_00 238608 2001-07-26 11:39:10

Column Descriptions

- lindex: unique mysql record index

- requestld: request ID

- filename: name of the file sent

- fileSize: size of the file in bytes

- date: the date and time that the request was filled

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar (10) PRI
filename varchar(100)
fileSize int(20) 0
date datetime 0000-00-00
00:00:00

A.14 Table Name: [rSCF]_PRODUCT_ID

This table contains a unique product id that has been assigned to each special_request.
There is a different table for each remote site.

Example
product_id Requested date
1 r0001 2001-06-31 00:00:00
2 r0002 2001-08-11 00:00:00

Column Descriptions
- product_id: a unique number for each special request.
- date: The date and time the product id was assigned.

Column Properties

Field Type Null Key Default Extra
product_id smallint(5) unsigned PRI NULL auto_increment
requestld varchar(5) no
date datetime no 0000-00-00 00:00:00

Last updated: 5/8/2012 Page 113 Version 201205.0



A.15 Table Name: SPECIAL_REQUEST_PID
This table contains the pid span of each special request.

Example
lindex requestld beginPID lastPID
1 r0001 1 3

Column Descriptions
- lindex: unique mysql record index

- requestld: a unique number for each special request.

- beginPID,endPID: the PID span

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(5)
beginP1D int(11) 0
lastPID int(11) 0

A.16 Table Name:

QA_PRODUCT_UPDATE
This table contains product QA update information submitted by the science team.

Example
qalD product release datel date2 user site ga_update
1 gla08 2.2 6311520 634564800 tzipi ALT Failed
Table continued
description date ccb_accept ccb_date
This is just really bad data. 2002-10-29 10:10:31 Y 2002-10-30 12:10:31

Column Descriptions
- galD: QA update ID
- product: Product type

- release: GSAS software release from product header

- datel: Start date of data in J2000 sec
- date2: End date of data in J2000 sec
- user: User name

- site: Site name

- (a_update: QA update flag indicator: passed, inferred passed, or failed

- description: Justification of why data passed or failed which can be verified

- date: Date and time of QA update submission

- cch_accept: Decision of the CCB to accept the QA update: Y (yes), N (no), U (undecided)
- ccb_date: Date and time that code was run to accept or reject QA update in datebase

Column Properties

Field Type Null Key

Default

Extra

galD smallint(5) unsigned PRI

NULL

auto_increment

Last updated: 5/8/2012 Page 114

Version 201205.0




product varchar(5)

release float 0

datel int(20) 0

date2 int(20) 0

user varchar(20)

site varchar(10)

ga_update varchar(20)

description varchar(255) Yes NULL
date datetime 0000-00-00 00:00:00
ccb_accept char(1) Yes NULL
ccb_date datetime Yes NULL

A.17 Table Name: TOO UPDATE

This table contains Target of Opportunity information submitted by the instrument team.

Example
lindex location status date doy time rev
1 Mt. Erebus, Antarctica ACCEPTED 2003-07-17 198 22:20 2769
Table continued
start_lat stop_lat start_lon stop_lon Station_flag
35.23451 36.55111 140.20781 140.03385 Y
Column Descriptions
- lindex: unique mysql record index
- location: Location of proposed target
- status: Accepted, rejected, or pending as determined by the instrument team
- date: Date of proposed target
- doy: Day of year of proposed target
- time: Time of proposed target
- rev: Rev of proposed target
- start_lat: Starting latitude of proposed target
- stop_lat: Ending latitude of proposed target
- start_lon: Starting longitude of proposed target
- stop_lon: Ending longitude of proposed target
- station_flag: Flag indicating whether the station file has been updated (Y/N)
Column Properties
Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
location varchar(30) YES NULL
status varchar(20) YES NULL
date varchar(10) YES NULL
doy int(3) YES NULL
time varchar(5) YES 00:00
rev int(5) YES NULL
start lat varchar(12) YES NULL
stop_lat varchar(12) YES NULL
start_lon varchar(12) YES NULL
Last updated: 5/8/2012 Page 115 Version 201205.0




stop_lon

varchar(12)

YES

NULL

station_flag

char(1)

YES

NULL

A.18 Table Name:

INSTRUMENT_UPDATE

This table contains instrument events and maneuvers submitted by the instrument team.

Example
lindex description laser date time J2000sec doy | refID | cycle | track | use_ flag
5 Enters sun L1A | 2003-03-26 | 11:41:00.0 | 101950860 85 | 1102 5 95 N
acq mode
6 Leaves sun L1A | 2003-03-27 | 00:57:29.0 | 101998649 86 | 1102 5 104 Y
acq mode
Column Descriptions
- lindex: unique index for each record in table
- description: Description of instrument event/maneuver
- laser: Laser campaign
- date: Date of event/maneuver
- time: Time of event/maneuver
- j2000sec: Time of event/maneuver in J2000 seconds
- doy: Day of year of event/maneuver
- refID: Reference orbit ID of event/maneuver
- cycle: Cycle of event/maneuver
- track: Track of event/maneuver
- use_flag: Use flag — use data? (Y/N)
Column Properties
Field Type Null Key Default Extra
lindex Int(3) NO PRI Auto_increment
description varchar(100) YES NULL
laser varchar(3) YES NULL
date varchar(10) YES NULL
time varchar(10) YES NULL
J2000sec Int(20) YES NULL
doy int(3) YES NULL
reflD Int(4) YES NULL
cycle int(3) YES NULL
track int(4) YES NULL
use_flag char(1) YES NULL
A.19 Table Name: RTSCM_UPDATE
This table contains real-time and saved instrument commands submitted by the instrument team.
Example
lindex description date time doy
1 (RT)AD Enable/Disable auto-gain settings (enable) 2003-03-26 11:41:00.0 85
2 ADPOINT with TARGTYPE fixed, TARGID 285 2003-03-27 00:57:29.0 86

Last updated: 5/8/2012

Page 116

Version 201205.0




Column Descriptions

- lindex: unique mysql record index

- description: Description of command
- date: Date of command

- time: Time of command

- doy: Day of year of command

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
description varchar(100) YES NULL
date varchar(10) YES NULL
time varchar(10) YES NULL
doy int(3) YES NULL

A.20 Table Name: RTSCM_POINTING

This table contains real-time and saved pointing commands submitted by the instrument team.

Example
lindex description date time doy Point_flag
1 2006/032-09:07:24.00 CMD ICE ADPOINT | 2003-03-26 | 11:41:00.0 85 2
with TARGTYPE fixed, TARGID 851 ;
2006/033-14:23:45.00 CMD ICE CBMEXE 2003-03-27 00:57:29.0 86 3
with INDEX 40
Column Descriptions
- lindex: unique mysql record index
- description: Description of command
- date: Date of command
- time: Time of command
- doy: Day of year of command
- point_flag: Type of pointing indicator:
0 - no pointing
1 - reference track pointing
2 - PATH target pointing
3 - scan (ocean or ATW)
Column Properties
Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
description varchar(100) YES NULL
date varchar(10) YES NULL
time varchar(10) YES NULL
doy int(3) YES NULL
point_flag Int(1) YES NULL
Last updated: 5/8/2012 Page 117 Version 201205.0




A.21 Table Name: SUBSCRIPTION_PRODUCT_SEG

This table contains a list of GLAS products for a subscription 1D

Example:
lindex requestld product
1 s0001 GLAO1
2 s0001 GLAO5
3 s0001 GLAO6

Column Descriptions:

- lindex: Unique mysqgl record index
- requestld: unique subscription ID
- product: requested product

Column Properties:

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(10)
product varchar(5)

A.22 Table Name: SUBSCRIPTION _TRACKS

This table contains a list of tracks for a specific repeat cycle, for a subscription ID.

Example
lindex Requestld begin_track end_track begin refTrack end refTrack refOrbitld
1 s0001 3 3 1 1 1
2 s0001 10 30 1 29 2

Column Descriptions
- lindex: unique mysql record index
- requestld: unique subscription ID
- begin_track, end_track: tracks span
- begin refTrack, end refTRack: span of the reference track.
reference track is the beginning track of the 14 rev tracks.
- refOrbitld: 1 is for 8 days repeat cycles; 2 is for 91 days repeat cycles

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(10)
begin_track int(11) 0

Last updated: 5/8/2012 Page 118 Version 201205.0



end_track int(11) 0
begin refTrack int(11) 0
end refTrack int(11) 0
refOrbitld int(11) 0

A.23 Table Name: SUBSCRIPTION _CYCLES

This table contains a list of cycles of a specific repeat cycle, for a subscription ID.

Example
lindex Requestld begin_cycle end_cycle refOrbitld
1 s0001 1 1 1
2 s0001 3 3 1
3 s0001 2 2 2

Column Descriptions
- lindex: unique mysql record index
- requestld: unique subscription ID
- begin_cycle, end_cycle: Cycles span
- refOrbitld: 1 is for 8 day repeat cycle; 2 is for 91 day repeat cycle

Column Properties

Field Type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(10)
begin_cycle int(11) 0
end_cycle int(11) 0
refOrbitld int(11) 0

A.24 Table Name: REQUEST_INPUT_FILES

The table contains a list of granules that were used to run a fulfill a special request.

Example:
lindex | requestld inputProduct fileName date laser
1 r0094 | GLAI0_019_2103_002_0351_0_01_0001. GLA10_03111407_r0094_L2_2103. 1/27/2005 | L2A
P0305 P0305_01_02 10:51:52

Column Descriptions:
- lindex: unique mysql record index
- requestld: request ID.
- Input Product: the I-SIPS file that went into fulfilling the request
- Filename: name of the file sent to the remote sites
- date: the date and time that the request was filled

- laser: the laser campaign

Last updated: 5/8/2012

Page 119

Version 201205.0




Column Properties:

Field type Null Key Default Extra
lindex int(10) no PRI Auto_increment
requestld varchar(5)
inputProduct varchar(100)
Filename varchar(100)
date datetime 0000-00-00
00:00:00
laser Varchar(3)
Last updated: 5/8/2012 Page 120 Version 201205.0



Appendix B - Flowcharts

B.1 Flowchart for data_select.f90

data_select

Last updated: 5/8/2012

Read Rev File

Read Control File |€—

Path to data directory
Rev filename
Input file filename
Output file filename
Anc07 filename
Start/end times
Lat/lon range
Product numbers

_/_

PassIDs based on time

PassIDs for timespan

Create Georeference Bins Georeference bins
from Lat/lon Range

Read BN and UR Filenames

-«

True

Determine GR Filename
from BN filename
Read Georeference File

BN filenames

and UR filenames

Georeference bins

Bin reference file record
“———  numbers based on

georeference bins

_/—

Bin reference file record
numbers

P

| (BNA for altimeter, BNL for lidar)

-

Page 121

Version 201205.0



Read Bin Reference File
Filter Unique Record Numbers
by PassIDs for Timespan
Sort unique record numbers

< | and passIDs based on

if (UR File)

True

\ 4

Read Unique Reference File
and create REQ file
Create Product Name from
UR Name

/ numbers and passIDs
_—/—_

l«———1 Product record numbers

Filter REQ file for duplicate
and ov erlapping unique records

/ and lat/lon range

if (no more BN or UR Files)

Unique record numbers

georeference bins

_/—_

PassIDs for timespan

Sorted unique record
numbers and passIDs

Sorted unique record

based on unique record
numbers

_/—_

Product name, beg/end
unique record numbers,

beg/end record numbers,
pass|Ds, start/end time,

Filtered REQ file

Last updated: 5/8/2012

Page 122

Version 201205.0



B.2 Flowchart for prod_create.f90

prod_create

Read Control File |@—— 1 Constants filename

Write headers to output file

For each input file:

Read product filenames

< | passIDs, start/end time,

For each product:

Filter Records by

Input file filenames
Output file filename

Anc07 filename

_,/_

Product name, beg/end
unique record numbers,
beg/end record numbers,

and lat/lon range

_/_

Read Product Original product

Lat/lon and Time
Write to New Product

if (no more products)

if (no more input files)

Last updated: 5/8/2012

Page 123

Version 201205.0



B.3 Flowchart for process_data.tcl

-Search I-SIPS directory for XFR files
-Create pull file
-Sort XFR files bytime

For each FN file

-Grep for CURRENT_REFID
-Grep for GLAO1

Last updated: 5/8/2012

Loop over XFR files

-Remove XFR
-Read each associated FN file

Loop over all files in FN file

-Check thatfile is a GL file

——® _Check thatfile is not a QAP or MET file

-Check that each GL file exists

-Check that PID of files all same 14 revs
-Check that all files have same release

If file time is greater than
revtime

v

-Create tmp/dist_id subdirectory

P Recreate XFR

v

Exit Program

*xkxk**This section containiall file reprocessing*****x*¥x

-Initialize

-Parse first file name into reflD, cycle, ref track

If the mscf_path
ends in "current”

append the laser time

period to it
|

Page 124

Version 201205.0



-if laser isn't off

-create directory
-create processed pass file

-Check reflD, cycle, and track against existing PIDs in
ISIPS_PRODUCT_ID table in the database

Last updated: 5/8/2012

If no match with
existing PIDs

Create anew PID in
Product_ID table with
beginning date and
time from first file

convert PID to GL or BN
extention

Loop through the file list

——

-Determine new filename with .PID extension

-If data was expedited, add "ql" to GL filename
-Check file for data

-Convertto J2000sec

-Check instrument update table to see if files good
-Move already processed files to deleted_data_path
-Move files notto be used to deleted_data_path
-Write file sizes to plot_files.txt

-Rename file with .PID extension and move to
tmp/dist_id

-Create list of new file names

-Determine product type

-Make a list of GLAO1 files

-Create a list of reference product numbers
-Create UR, PS, BN, and GR files

v

update the
If GLAO1 received P processed_8 pass/

processed 911 pass files

I

if new tracks were

added to ancillary P scpto rSCFs

processed pass file

Page 125

Version 201205.0



rexxrxkxR* This section moves or removes |-SIPS files x*x#x#xkix

For each GLAfile

-Get starting/ending J2000 sec for file
-Check ISIPS_SUBSCRIPTIONS table to see
if GL file is saved

-Create UR, PS, BN, GR file names

-Move or delete GL, UR, PS, BN, GR files

For GL, UR, BN, PS, GR
files

-Check that file exists
— Move file unless file is a link
-Don'tremove BNLO2/GRLO2 files

Y
——p Update creation table

A 4
Remove FN file

|

If PDR.XFR file not
in tmp dir or if GL
files don't exist

Remove tmp/dist_id
subdirectory

Y
» End XFR loop [«

A 4

Exit Program

Last updated: 5/8/2012 Page 126 Version 201205.0



B.4 Flowchart for process_ea.tcl

Read CREATION table

v

if no energy analysis job running

v

if energy analysis needs to be run

v

-Get laser of first file in need of energy analysis
-Create a list for files from this laser

For each file in need of energy analysis

-Check ifits from the same laser as first file
-If from the same laser, add it to the list

For each file on the list

-Update CREATION table that energy analysis is

running

-Run the energy analysis on the laser with files
from the list

For each file on the list

-Update the CREATION table that energy
analysis was run

A

-Exit program

Last updated: 5/8/2012 Page 127

Version 201205.0



B.5 Flowchart for process_subs.tcl

Read CREATION table

Are subscriptions running? yes
e
o
Is product set full? no
‘
—r Update CREATION table that subscriptions are running

'

Create reference product list

If reference product listis not empty

Check reflD and cycle against SUBSCRIPTION_CYCLES table
and check reflD and reftrack against SUBSCRIPTION_TRACKS_1
table to getlist of requestiD's

\ Yvy

Last updated: 5/8/2012 Page 128 Version 201205.0



Check reflD and cycle against SUBSCRIPTION_CYCLES table
and check reflD and reftrack against SUBSCRIPTION_TRACKS_2
table to getlist of requestiD's

For each subscription ID

- Create /SCF/tmp subdirectory

- Create data_selectinputfile

- Get tracks from SUBSCRIPTION_TRACKS_1
and SUBSCRIPTION_TRACKS_2 tables

- Write tracks to orgTrack.txt

For each reference product

If requestlD, product match against
SUBSCRIPTION_PRODUCT_SEG table

Getlist of GL files for reference product

For each GL file

If requestID, product and segment match
against SUBSCRIPTION_PRODUCT_SEG
table

Yvyy Yvy

Last updated: 5/8/2012 Page 129 Version 201205.0



— - Add BN and UR file names to data_select input file
——r - Add product to product_list for data_select

Fill subscriptions

If data_selectinput file is not empty

- Gettimes, lats/lons, userID from SUBSCRIPTION_USER table
- Create data_select control file

- Run data_select

- Create parse_req control file

- Run parse_req

- Create prod_create control file

- Run prod_create

Update DISTRIBUTION table with PID

For each file created by prod_create (1 per prod

- Getfile size

- Add file name to DISTRIBUTION_FILES table

- Add file name to SUBSCRIPTION_INPUT_FILES2

- Add I-SIPS file name to SUBSCRIPTION_INPUT_FILES1
- Create browse products and add to final list

Yyyvy i Yvy

Last updated: 5/8/2012 Page 130 Version 201205.0



- Create UR and PS files
- Create BN and GR files
- Add GL, UR, PS, BN, GR files to final list

l

——————— | End loop over prod_create created GLAfiles

'

- Get institution from USER table
——® - Files in final list are moved to dist/institution directory
- Create PDR for files in final list

'

End zero data_selectinputfile size check

'

Remove tmp directory

'

g End subscription ID loop

A 4

P End reference product empty check

for each file

Update CREATION table

'

Exit program 3

Last updated: 5/8/2012 Page 131 Version 201205.0



B.6 Flowchart for data_select_req.tcl

retrieve data request
parameters from
database tables

Requestthe
missing files from

ISIPS

Any

missing
Files?

A

Last updated: 5/8/2012

create the control file
to data select
software

run data select
software

1

output:

file

T
o
Q

run prod_create

create all the
directories to the
new GLAS product

Distribute the data or
log file to the rSCF

A
T T
- -

Fig 4-1

Page 132 Version 201205.0



Appendix C — File formats

C.1 REQ File Format

Below is the format of the REQ file created by data_select.f90. It is a direct access, binary file of
record length 288 bytes. It contains information for creating or visualizing subsetted or
supersetted products adhering to certain temporal and geographic criteria using data from the
original I-SIPS product files. Each record contains the original product file name, starting and
ending unique record numbers, corresponding starting and ending physical record numbers, pass
ID, and mode for GLAOL. There is one REQ file created per product type unless the file would
exceed 2 GB; then it is separated into multiple files.

The first 3 records contain ASCII headers:
- First header is the record length.
- Second header is the number of headers.

- Third header is the start and end time of the data request, and the requested area longitude
and latitude.

Following the headers, the data are in the following format:

Bytes Type of variable Description

1-255 Char*255 GLA product file name

256 Char*1 Spare byte so next integer will start on 4 byte boundary
257-260 | I*4 Unique record index of first record

261-264 | 1*4 Unique record index of last consecutive record
265-268 | I*4 Physical number of first record

269-272 | I*4 Physical number of last consecutive record

273-283 | Char*11 Pass ID (prkkccctttt)

284 Char*1 Spare byte so next integer will start on 4 byte boundary
285-288 | I*4 Mode for GLAOL only

Last updated: 5/8/2012 Page 133 Version 201205.0



	Summary of Changes since Version 200112.0
	Summary of Changes since Version 200205.0
	Summary of Changes since Version 200208.0
	Summary of Changes since Version 200212.0
	Summary of Changes since Version 200302.0
	Summary of Changes since Version 200304.0
	Summary of Changes since Version 200306.0
	Summary of Changes since Version 200308.0
	Summary of Changes since Version 200311.0
	Summary of Changes since Version 200401.0
	Summary of Changes since Version 200403.0
	Summary of Changes since Version 200405.0
	Summary of Changes since Version 200408.0
	Summary of Changes since Version 200501.0
	Summary of Changes since Version 200507.0
	Summary of Changes since Version 200512.0
	Summary of Changes since Version 200603.0
	Summary of Changes since Version 200605.0
	Summary of Changes since Version 200609.0
	Summary of Changes since Version 200701.0
	Summary of Changes since Version 200707.0
	Summary of Changes since Version 200708.0
	Summary of Changes since Version 200801.0
	Summary of Changes since Version 200803.0
	Summary of Changes since Version 200804.0
	 Summary of Changes since Version 200807.0
	Summary of Changes since Version 200808.0
	Summary of Changes since Version 200809.0
	Summary of Changes since Version 200810.0
	Summary of Changes since Version 200812.0
	Summary of Changes since Version 200901.0
	Summary of Changes since Version 200906.0
	Summary of Changes since Version 200909.0
	Summary of Changes since Version 201101.0
	1 Introduction
	2 Data Request GUI
	2.1 Invocation
	2.2 Environment Definitions
	2.3 List and Descriptions of the IDL Routines used by the Data Request GUI
	2.3.1 orbselect.f90
	2.3.1.1 orbselect_main
	2.3.1.2 georef
	2.3.1.3 binrev
	2.3.1.4 create_bin_config 
	2.3.1.5 getbins
	2.3.1.6 get1bin

	2.3.2 select_processed_tracks.f90
	2.3.3 select_time_tracks.f90
	2.3.4 time_tracks.f90
	2.3.5 sort_file.tcl


	3 Parsing the Email and Populating the Mysql Data Request Tables 
	3.1 Invocation and environment
	3.2 Parse Mail scripts parse_mail.tcl
	3.2.1 exist_check.tcl
	3.2.2 write_log.tcl
	3.2.3 qa_mail.tcl

	3.3 populate_db.tcl
	3.3.1 subset.tcl
	3.3.2 sort_unique.tcl
	3.3.3 find_span.tcl
	3.3.4 zero_padding.tcl
	3.3.5 zero_out.tcl
	3.3.6 convert2j2000.tcl
	3.3.7 find_passID.f90
	3.3.8 send_mail_user.pl

	3.4 data_select_req.tcl
	3.5 run_create_maps.ksh
	3.5.1 create_maps.pl
	3.5.1.1 initialize_arrays.pm
	3.5.1.2 get_area_dates.pm
	3.5.1.3 get_product_seg.pm
	3.5.1.4 get_tracks.pm
	3.5.1.5 get_cycles.pm
	3.5.1.6 send_mail_local.pm



	4 Create Products for Special Requests
	4.1 Main script to process special requests:  data_select_req.tcl
	4.1.1 add_to_log_file.tcl
	4.1.2 filter_files_by_release_or_version.tcl
	4.1.3 lsearch_all.tcl
	4.1.4 sort_unique_version
	4.1.5 run_ds_pc.tcl
	4.1.5.1 write_ds_ctrl.tcl
	4.1.5.2 catch_errors.tcl

	4.1.6 data_select.f90
	4.1.6.1 const_scf_mod.f90 
	4.1.6.2 Anc70_scf_mod.f90
	4.1.6.3 ANC70_mod.f90 
	4.1.6.4 filesize_mod.f90
	4.1.6.5 open_bin_file_mod.f90
	4.1.6.6 fbins_mod.f90
	4.1.6.7 common_files_mod.f90
	4.1.6.8 read_ds_ctrl_mod.f90 
	4.1.6.9 read_rev_file_mod.f90
	4.1.6.10 create_geobins_mod.f90
	4.1.6.11 read_filenames_mod.f90
	4.1.6.12 read_geobins_mod.f90
	4.1.6.13 read_binrev_mod.f90 
	4.1.6.14 sort_file_mod.f90 
	4.1.6.15 read_unique_mod.f90 
	4.1.6.16 filter_req_mod.f90
	4.1.6.17 find_uix_delta_mod.f90
	4.1.6.18 rewrite_req.f90

	4.1.7 write_pr_ctrl.tcl
	4.1.8 write_pc_ctrl.tcl
	4.1.9 parse_req.f90
	4.1.9.1 read_pr_ctrl_mod.f90
	4.1.9.2 read_req_mod.f90 
	4.1.9.3 write_req_mod.f90 

	4.1.10 prod_create.f90
	4.1.10.1 prod_common_mod.f90
	4.1.10.2 prod_reader_mod.f90
	4.1.10.3 prod_writer_mod.f90
	4.1.10.4 read_pc_ctrl_mod.f90
	4.1.10.5 read_prod_recs_mod.f90

	4.1.11 prepare_browse.tcl
	4.1.11.1 qapg.f90
	4.1.11.2 Runbrowse.ksh
	4.1.11.2.1 Qabrowse.pro


	4.1.12 create_pass_files.tcl
	4.1.13 mkpass.f90
	4.1.13.1 read_pass_control_mod.f90
	4.1.13.2 read_glas_record_mod.f90
	4.1.13.3 qsorti_mod.f90
	4.1.13.4 find_pass_mod.f90

	4.1.14 create_unique_files.tcl
	4.1.15 mkunique_index.f90
	4.1.15.1 read_glas_unique_control_mod.f90

	4.1.16 create_binrev.tcl
	4.1.17 mkbinrev.f90 
	4.1.17.1 read_binrev_control_mod.f90

	4.1.18 create_geo.tcl
	4.1.19 mkgeo.f90
	4.1.19.1 read_geo_control_mod.f90

	4.1.20 parameters_for_pdr.tcl
	4.1.21 invoke_perl.ksh
	4.1.22 compare_lists.tcl
	4.1.23 lsearch_all_idx.tcl
	4.1.24 send_mail_mscf.pl
	4.1.25 send_mail_ccb.pl
	4.1.26 read_header_val.f90
	4.1.26.1 get_header_val_mod.f90


	5 Processing Data 
	5.1 Invocation
	5.2 Environment Definitions
	5.3 Main script to process data: process_data.tcl
	5.3.1 create_binrev.tcl
	5.3.2 create_geo.tcl
	5.3.3 create_pass_files.tcl
	5.3.4 create_unique_files.tcl
	5.3.5 find_track.tcl
	5.3.6 read_fn_file.tcl
	2.3.5.17 read_keyword.tcl

	5.3.7 modify_processed_tracks.tcl
	5.3.8 scp_rev_file.ksh
	5.3.9 check_rev_time.tcl
	2.3.5.18 get_data_directory.tcl

	5.3.10 check_pid.tcl
	5.3.11 time_sort.tcl
	5.3.12 update_prod_rel_file.tcl


	6 Fulfilling Subscriptions
	6.1 Invocation
	6.2 Environment Definitions
	6.3 Main script to process subscriptions: process_subs.tcl
	6.3.1 create_pdr.tcl
	6.3.2 lsearch_all.tcl
	6.3.3 run_ds_pc.tcl
	6.3.3.1. write_ds_ctrl.tcl
	6.3.3.2. write_pr_ctrl.tcl
	6.3.3.3. write_ps_ctrl.tcl
	6.3.4 sub_error.tcl
	6.3.5 check_full_pid.tcl


	7 Energy Analysis
	7.1 Invocation
	7.2 Environment Definitions
	7.3 Main script to run energy analysis: process_ea.tcl
	7.3.1 write_ea_ctrl.tcl
	7.3.1.1. run_ea.ksh
	7.3.1.1.1. scfplots.pro
	7.3.1.1.2. energy_analysis2html.pro
	7.3.1.1.3. wf_analysis2html.pro
	7.3.1.2. ps_to_png.ksh
	7.3.1.3. scp_file_web.ksh


	8 Data Distribution
	8.1 parameters_for_pdr.tcl
	8.2 invoke_perl.ksh
	8.3 create_pdr.pl

	9  Submitting Product QA Updates to the I-SIPS
	9.1 Invocation
	9.2 Input Arguments
	9.3 Environment Definitions
	9.4 submit_qa.tcl
	9.4.1 create_qauf.tcl


	10 Monitoring
	10.1 check_dist.tcl
	10.2 check_ps.tcl
	10.3 check_ps_rscf.tcl
	10.4.1 ssh_rscfs.tcl
	10.4.2 mv_saved_files.tcl


	11 Gap Checks
	11.1 check_pending_subs.tcl
	11.2 check_pending_ea.tcl
	11.3 file_gap.tcl
	11.2.1 check_laser_op.tcl
	11.2.2 get_file_times.tcl

	11.4 check_subs_ea.tcl

	12 Clean-up
	12.1 daily_cleanup.tcl
	12.1.2 get_file_j2000.tcl
	12.1.3 get_pid_j2000.tcl
	12.1.4 check_inst_update.tcl


	13 Instrument Updates 
	13.1 Invocation and environment
	13.2 Environment Definitions
	13.3 parse_istat_mail.tcl

	14 I-SIPS Distribution Monitoring 
	14.1 Invocation and environment
	14.2 Environment Definitions
	14.3 parse_stat_mail.tcl

	15 Daily Statistics Report 
	15.1 Invocation and environment
	15.2 Environment Definitions
	15.3 Stat_report.tcl
	15.3.1 send_mail_report.pl


	Appendix A - Mysql Database Tables
	A.1 Table Name: USER
	A.2 Table Name:  SPECIAL_REQUEST_USER
	A.3 Table Name:  SUBSCRIPTION_USER
	A.4 Table Name: ISIPS_PRODUCT_ID
	A.5 Table Name:  REQUEST_PRODUCT_SEG
	A.6 Table Name:  REQUEST_TRACKS
	A.7 Table Name: REQUEST_CYCLES
	A.8 Table Name:  ISIPS_SUBSCRIPTIONS
	A.9 Table Name:  CREATION
	A.10 Table Name:  SUBSCRIPTION_INPUT_FILES1
	A.11 Table Name:  SUBSCRIPTION_INPUT_FILES2
	A.12 Table Name:  DISTRIBUTION
	A.13 Table Name:  DISTRIBUTION_FILES
	A.14 Table Name:   [rSCF]_PRODUCT_ID
	A.15 Table Name:  SPECIAL_REQUEST_PID
	A.16 Table Name:   QA_PRODUCT_UPDATE
	A.17 Table Name:   TOO_UPDATE
	A.18 Table Name:   INSTRUMENT_UPDATE
	A.19 Table Name:   RTSCM_UPDATE
	A.20 Table Name:   RTSCM_POINTING
	A.21 Table Name:  SUBSCRIPTION_PRODUCT_SEG
	A.22 Table Name:  SUBSCRIPTION _TRACKS
	A.23 Table Name: SUBSCRIPTION _CYCLES
	A.24 Table Name:  REQUEST_INPUT_FILES

	Appendix B - Flowcharts
	B.1 Flowchart for data_select.f90
	B.2 Flowchart for prod_create.f90
	B.3 Flowchart for process_data.tcl
	B.4 Flowchart for process_ea.tcl
	B.5 Flowchart for process_subs.tcl
	B.6 Flowchart for data_select_req.tcl

	Appendix C – File formats
	C.1 REQ File Format


